Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 154 x^{15} + 399 x^{14} - 822 x^{13} + 1393 x^{12} - 1974 x^{11} + 2358 x^{10} - 2374 x^{9} + 2019 x^{8} - 1455 x^{7} + 896 x^{6} - 471 x^{5} + 210 x^{4} - 78 x^{3} + 24 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-42845606719488000000=-\,2^{18}\cdot 3^{21}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{1}{13} a^{15} - \frac{1}{13} a^{14} + \frac{1}{13} a^{13} - \frac{3}{13} a^{12} + \frac{2}{13} a^{11} - \frac{5}{13} a^{10} - \frac{4}{13} a^{9} - \frac{2}{13} a^{8} + \frac{1}{13} a^{7} - \frac{4}{13} a^{6} - \frac{4}{13} a^{5} + \frac{1}{13} a^{4} - \frac{3}{13} a^{3} - \frac{6}{13} a^{2} + \frac{4}{13} a - \frac{3}{13}$, $\frac{1}{13949} a^{17} + \frac{8}{377} a^{16} - \frac{6245}{13949} a^{15} - \frac{6742}{13949} a^{14} - \frac{6481}{13949} a^{13} + \frac{4304}{13949} a^{12} - \frac{24}{1073} a^{11} + \frac{2655}{13949} a^{10} - \frac{2274}{13949} a^{9} - \frac{2786}{13949} a^{8} + \frac{1032}{13949} a^{7} - \frac{6449}{13949} a^{6} - \frac{3532}{13949} a^{5} + \frac{5999}{13949} a^{4} + \frac{3659}{13949} a^{3} - \frac{3222}{13949} a^{2} + \frac{1255}{13949} a - \frac{3511}{13949}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{227}{377} a^{17} + \frac{1915}{377} a^{16} - \frac{9214}{377} a^{15} + \frac{30235}{377} a^{14} - \frac{75151}{377} a^{13} + \frac{147612}{377} a^{12} - \frac{237330}{377} a^{11} + \frac{24297}{29} a^{10} - \frac{350612}{377} a^{9} + \frac{24763}{29} a^{8} - \frac{245835}{377} a^{7} + \frac{157154}{377} a^{6} - \frac{88797}{377} a^{5} + \frac{44176}{377} a^{4} - \frac{19637}{377} a^{3} + \frac{6858}{377} a^{2} - \frac{2425}{377} a + \frac{802}{377} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 735.644505219 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.216.1, 3.1.135.1, 6.0.139968.1, 6.0.54675.1, 9.1.3779136000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |