Normalized defining polynomial
\( x^{18} - 4 x^{17} + 16 x^{16} - 46 x^{15} + 98 x^{14} - 156 x^{13} + 95 x^{12} + 159 x^{11} - 436 x^{10} + 622 x^{9} - 527 x^{8} + x^{7} + 1333 x^{6} - 1904 x^{5} + 4570 x^{4} - 2236 x^{3} + 2947 x^{2} - 3243 x + 989 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-427054033707557870801891=-\,11^{7}\cdot 23^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{2}{9} a^{11} + \frac{1}{3} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{45} a^{16} - \frac{2}{45} a^{15} - \frac{2}{45} a^{14} + \frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{16}{45} a^{11} + \frac{1}{5} a^{10} + \frac{8}{45} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{15} a^{6} + \frac{1}{9} a^{5} + \frac{1}{45} a^{4} + \frac{1}{15} a^{3} - \frac{1}{15} a^{2} - \frac{4}{45} a + \frac{11}{45}$, $\frac{1}{25662083894989320848557015548585} a^{17} - \frac{66500311021922360223660561859}{25662083894989320848557015548585} a^{16} + \frac{115594000088369410841247630427}{25662083894989320848557015548585} a^{15} + \frac{2753122351471971812838332395072}{25662083894989320848557015548585} a^{14} - \frac{2262616138925487317202910445389}{25662083894989320848557015548585} a^{13} - \frac{1984550952573047497289025577753}{25662083894989320848557015548585} a^{12} - \frac{569815658666267997476113757162}{2851342654998813427617446172065} a^{11} + \frac{254504438791656466777783012870}{5132416778997864169711403109717} a^{10} - \frac{11693380277483617572372397256287}{25662083894989320848557015548585} a^{9} + \frac{1175164765657254826741519111994}{5132416778997864169711403109717} a^{8} + \frac{6055896911339270080405177404257}{25662083894989320848557015548585} a^{7} + \frac{271855500587744031893928514756}{2851342654998813427617446172065} a^{6} + \frac{5784045279540335251571801001371}{25662083894989320848557015548585} a^{5} - \frac{1616700513145662756022157824838}{8554027964996440282852338516195} a^{4} - \frac{458212899688271122402051381238}{8554027964996440282852338516195} a^{3} + \frac{4013069766219198713131055126237}{25662083894989320848557015548585} a^{2} + \frac{7066587636756514887661226367814}{25662083894989320848557015548585} a + \frac{925169344353262592895827539}{66310294302297986688777817955}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8933.95364067 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 28 conjugacy class representatives for t18n301 |
| Character table for t18n301 is not computed |
Intermediate fields
| 3.1.23.1, 6.0.3078251.1, 9.1.33860761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |