Normalized defining polynomial
\( x^{18} - 4 x^{17} + 11 x^{16} - 30 x^{15} + 70 x^{14} - 159 x^{13} + 226 x^{12} - 334 x^{11} + 690 x^{10} - 675 x^{9} + 761 x^{8} - 1054 x^{7} + 1011 x^{6} - 825 x^{5} + 555 x^{4} - 565 x^{3} + 500 x^{2} - 125 x + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4219225854723000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{15} a^{12} + \frac{4}{15} a^{8} + \frac{1}{5} a^{7} + \frac{4}{15} a^{6} + \frac{1}{5} a^{5} + \frac{4}{15} a^{4} - \frac{1}{5} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{9} - \frac{2}{5} a^{8} + \frac{1}{15} a^{7} - \frac{1}{5} a^{6} + \frac{1}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{15} a^{3} - \frac{1}{3} a$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{10} + \frac{4}{15} a^{8} + \frac{1}{5} a^{7} - \frac{2}{15} a^{6} - \frac{2}{5} a^{5} + \frac{1}{3} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{105} a^{15} + \frac{1}{35} a^{14} - \frac{1}{35} a^{13} + \frac{1}{35} a^{12} + \frac{1}{105} a^{11} - \frac{2}{35} a^{10} + \frac{2}{21} a^{9} - \frac{1}{5} a^{8} + \frac{16}{105} a^{7} + \frac{4}{35} a^{6} + \frac{47}{105} a^{5} + \frac{16}{35} a^{4} + \frac{7}{15} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{3045} a^{16} - \frac{4}{1015} a^{15} + \frac{43}{3045} a^{14} - \frac{33}{1015} a^{13} + \frac{82}{3045} a^{12} - \frac{1}{29} a^{11} + \frac{23}{3045} a^{10} + \frac{76}{1015} a^{9} - \frac{1069}{3045} a^{8} + \frac{246}{1015} a^{7} - \frac{32}{145} a^{6} - \frac{422}{1015} a^{5} + \frac{8}{203} a^{4} + \frac{284}{1015} a^{3} - \frac{10}{609} a^{2} + \frac{89}{203} a + \frac{47}{203}$, $\frac{1}{99596560152075} a^{17} - \frac{5711182124}{99596560152075} a^{16} - \frac{127017716608}{33198853384025} a^{15} + \frac{25572710326}{2845616004345} a^{14} - \frac{126246376748}{19919312030415} a^{13} + \frac{2101712829116}{99596560152075} a^{12} - \frac{6792964570124}{99596560152075} a^{11} - \frac{517054540273}{33198853384025} a^{10} + \frac{1914391000498}{19919312030415} a^{9} + \frac{606030308341}{3983862406083} a^{8} + \frac{14403480693722}{33198853384025} a^{7} - \frac{34685816497639}{99596560152075} a^{6} - \frac{23533058229049}{99596560152075} a^{5} - \frac{376315836086}{6639770676805} a^{4} - \frac{51753781253}{137374565727} a^{3} - \frac{2189026277104}{19919312030415} a^{2} - \frac{1556952554459}{3983862406083} a + \frac{1447913601466}{3983862406083}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{32006120422}{3434364143175} a^{17} + \frac{17879358509}{490623449025} a^{16} - \frac{330633862567}{3434364143175} a^{15} + \frac{8534206084}{32708229935} a^{14} - \frac{413846073481}{686872828635} a^{13} + \frac{222239512673}{163541149675} a^{12} - \frac{6305627509547}{3434364143175} a^{11} + \frac{8978669096723}{3434364143175} a^{10} - \frac{1340922602003}{228957609545} a^{9} + \frac{1207426530719}{228957609545} a^{8} - \frac{18998737944307}{3434364143175} a^{7} + \frac{30730050637688}{3434364143175} a^{6} - \frac{26890207458742}{3434364143175} a^{5} + \frac{1563701925374}{228957609545} a^{4} - \frac{189890616446}{45791521909} a^{3} + \frac{3222773415943}{686872828635} a^{2} - \frac{679958525065}{137374565727} a + \frac{172518070402}{137374565727} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163709.22551032295 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 6.0.270000.1, 9.3.395307000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |