Normalized defining polynomial
\( x^{18} - 9 x^{17} + 204 x^{16} - 1310 x^{15} + 15900 x^{14} - 72270 x^{13} + 579766 x^{12} - 1932168 x^{11} + 10057503 x^{10} - 26756821 x^{9} + 84214434 x^{8} - 179179878 x^{7} + 372512932 x^{6} - 539106924 x^{5} + 4016812476 x^{4} - 7029585108 x^{3} + 46526330856 x^{2} - 69223313904 x + 93654474472 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-421561400235330951371150243189110960128=-\,2^{12}\cdot 3^{21}\cdot 7^{14}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{28} a^{15} + \frac{3}{28} a^{14} + \frac{3}{28} a^{13} - \frac{3}{28} a^{12} + \frac{1}{28} a^{11} + \frac{3}{28} a^{10} - \frac{3}{28} a^{9} + \frac{3}{28} a^{8} + \frac{1}{14} a^{7} - \frac{1}{7} a^{6} + \frac{1}{14} a^{5} - \frac{1}{14} a^{4} + \frac{5}{14} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{28} a^{16} + \frac{1}{28} a^{14} + \frac{1}{14} a^{13} + \frac{3}{28} a^{12} - \frac{5}{28} a^{10} - \frac{1}{14} a^{9} + \frac{1}{7} a^{7} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{252403043013987454662782507587218629084287668450956902349069765870889523390461021630724} a^{17} - \frac{3262797855740393586657822914922926175928618465424230475295698202544154977650780891929}{252403043013987454662782507587218629084287668450956902349069765870889523390461021630724} a^{16} + \frac{43463543423803804166338559683480216351078844153620825360052101075018820129134941290}{63100760753496863665695626896804657271071917112739225587267441467722380847615255407681} a^{15} + \frac{271691800437337842753306870929295582005488792690409516638982892325135907952965604897}{4853904673345912589668894376677281328543993624056863506712880112901721603662711954437} a^{14} - \frac{481355466688601226622448694283628140628557317861964566384912640222346520629865146395}{18028788786713389618770179113372759220306262032211207310647840419349251670747215830766} a^{13} - \frac{2586070153479078922133624421641980528022819742435397670229643811830361131248350749075}{36057577573426779237540358226745518440612524064422414621295680838698503341494431661532} a^{12} - \frac{2023043518065097706129088233613977256650846945199285298013352088638145387823040678575}{18028788786713389618770179113372759220306262032211207310647840419349251670747215830766} a^{11} + \frac{19572669998336256589128854500631223761517458680767744571595002694741576916192226171911}{252403043013987454662782507587218629084287668450956902349069765870889523390461021630724} a^{10} - \frac{48513979820160292335581771665661902178535597891250795400683863178042251257080155636457}{252403043013987454662782507587218629084287668450956902349069765870889523390461021630724} a^{9} - \frac{30214995960062230905557182421974901836084534525796168852980769318647521118632351517791}{126201521506993727331391253793609314542143834225478451174534882935444761695230510815362} a^{8} + \frac{439406213611966889301971757530855868924081020480439834879368873163816264669773088486}{4853904673345912589668894376677281328543993624056863506712880112901721603662711954437} a^{7} - \frac{3577885618454434960482401568189085614321759796697963733025594311468009181268455137607}{36057577573426779237540358226745518440612524064422414621295680838698503341494431661532} a^{6} + \frac{4335839538672450313629600915207417706889374016748993947747552727282436153816123260590}{9014394393356694809385089556686379610153131016105603655323920209674625835373607915383} a^{5} - \frac{1311244515658881203365826586462620858894724737572313104919732335187186853851818885171}{18028788786713389618770179113372759220306262032211207310647840419349251670747215830766} a^{4} - \frac{10381495310635678436726482548906148110421692495818115401625203335442826385396306342087}{63100760753496863665695626896804657271071917112739225587267441467722380847615255407681} a^{3} + \frac{20506429593582282308830505901724764958097533689857196197553970394640748874822477977696}{63100760753496863665695626896804657271071917112739225587267441467722380847615255407681} a^{2} + \frac{21280720033604770309656093682763166774395349824946441448489345222613383797666304953454}{63100760753496863665695626896804657271071917112739225587267441467722380847615255407681} a + \frac{900765432785292483468917814318163026453284445915994198006093785473471584876983233997}{4853904673345912589668894376677281328543993624056863506712880112901721603662711954437}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{18}\times C_{1890}$, which has order $4898880$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.3.756.1, \(\Q(\zeta_{7})^+\), 6.0.41817574512.4, 6.0.1581065703.2, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |