Normalized defining polynomial
\( x^{18} + 45 x^{16} - 210 x^{15} + 3024 x^{14} + 10080 x^{13} - 53472 x^{12} - 1285200 x^{11} - 5355135 x^{10} + 39238850 x^{9} + 452260827 x^{8} + 590724540 x^{7} - 9047417835 x^{6} - 42861762090 x^{5} + 7539888843 x^{4} + 615461531370 x^{3} + 2224622720133 x^{2} + 3640164079860 x + 2551664661337 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-420043524447982694779997090972698756380285468672=-\,2^{18}\cdot 3^{27}\cdot 7^{12}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $442.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3371,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(2843,·)$, $\chi_{4788}(457,·)$, $\chi_{4788}(3469,·)$, $\chi_{4788}(3599,·)$, $\chi_{4788}(2963,·)$, $\chi_{4788}(2965,·)$, $\chi_{4788}(2459,·)$, $\chi_{4788}(3875,·)$, $\chi_{4788}(1703,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(4103,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(1717,·)$, $\chi_{4788}(2615,·)$, $\chi_{4788}(505,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{27} a^{6} + \frac{1}{9} a^{4} + \frac{2}{27} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{27}$, $\frac{1}{27} a^{7} - \frac{4}{27} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{4}{27} a + \frac{2}{9}$, $\frac{1}{54} a^{8} + \frac{1}{27} a^{5} - \frac{1}{6} a^{4} + \frac{1}{9} a^{3} + \frac{1}{54} a^{2} - \frac{1}{3} a - \frac{7}{18}$, $\frac{1}{162} a^{9} - \frac{1}{18} a^{5} + \frac{5}{54} a^{3} + \frac{1}{9} a^{2} + \frac{1}{6} a + \frac{8}{81}$, $\frac{1}{1782} a^{10} + \frac{2}{891} a^{9} - \frac{1}{297} a^{8} - \frac{4}{297} a^{7} + \frac{1}{594} a^{6} + \frac{13}{297} a^{5} - \frac{83}{594} a^{4} - \frac{1}{297} a^{3} + \frac{91}{594} a^{2} - \frac{4}{891} a + \frac{28}{81}$, $\frac{1}{5346} a^{11} - \frac{1}{5346} a^{10} + \frac{7}{5346} a^{9} + \frac{13}{1782} a^{8} - \frac{25}{1782} a^{7} - \frac{23}{1782} a^{6} - \frac{46}{891} a^{5} - \frac{74}{891} a^{4} + \frac{122}{891} a^{3} + \frac{1112}{2673} a^{2} + \frac{1547}{5346} a - \frac{145}{486}$, $\frac{1}{112266} a^{12} - \frac{1}{37422} a^{10} + \frac{25}{16038} a^{9} + \frac{4}{2079} a^{8} + \frac{10}{891} a^{7} - \frac{23}{2673} a^{6} - \frac{29}{594} a^{5} + \frac{479}{12474} a^{4} + \frac{1123}{16038} a^{3} - \frac{632}{2079} a^{2} - \frac{1201}{5346} a - \frac{3379}{10206}$, $\frac{1}{112266} a^{13} - \frac{1}{37422} a^{11} - \frac{1}{8019} a^{10} + \frac{17}{12474} a^{9} + \frac{5}{1782} a^{8} - \frac{14}{2673} a^{7} - \frac{5}{297} a^{6} + \frac{229}{6237} a^{5} + \frac{421}{16038} a^{4} + \frac{395}{4158} a^{3} - \frac{193}{5346} a^{2} - \frac{23026}{56133} a + \frac{25}{162}$, $\frac{1}{785862} a^{14} - \frac{1}{785862} a^{12} + \frac{1}{112266} a^{11} - \frac{1}{6237} a^{10} + \frac{85}{56133} a^{9} + \frac{2111}{261954} a^{8} + \frac{7}{594} a^{7} + \frac{1381}{261954} a^{6} - \frac{1811}{112266} a^{5} - \frac{2543}{29106} a^{4} - \frac{2455}{112266} a^{3} - \frac{341}{35721} a^{2} - \frac{212}{567} a + \frac{12499}{71442}$, $\frac{1}{2357586} a^{15} + \frac{1}{392931} a^{13} - \frac{1}{336798} a^{12} + \frac{13}{56133} a^{10} - \frac{316}{1178793} a^{9} + \frac{2}{2079} a^{8} + \frac{2231}{130977} a^{7} - \frac{3407}{336798} a^{6} + \frac{394}{14553} a^{5} + \frac{1438}{56133} a^{4} + \frac{40951}{1178793} a^{3} + \frac{151}{4158} a^{2} - \frac{36733}{785862} a - \frac{3217}{30618}$, $\frac{1}{158494599379061421623532} a^{16} + \frac{4274416331506813}{79247299689530710811766} a^{15} - \frac{8043975378561074}{13207883281588451801961} a^{14} + \frac{4142287766563357}{79247299689530710811766} a^{13} + \frac{186197852219625689}{79247299689530710811766} a^{12} + \frac{9854036595886756}{269548638399764322489} a^{11} + \frac{9133456333504819438}{39623649844765355405883} a^{10} - \frac{77013256228738308145}{39623649844765355405883} a^{9} + \frac{3005603697885535547}{359398184533019096652} a^{8} - \frac{1210312991807169334429}{79247299689530710811766} a^{7} - \frac{11920526279383012946}{3602149985887759582353} a^{6} + \frac{588281660486549526661}{13207883281588451801961} a^{5} + \frac{11448581876764232449481}{158494599379061421623532} a^{4} - \frac{11660042389692520855993}{79247299689530710811766} a^{3} + \frac{32394902942809266835}{13207883281588451801961} a^{2} + \frac{778424512286138687771}{3602149985887759582353} a - \frac{450389828508663808279}{1309872722141003484492}$, $\frac{1}{17192718888557394043773277361622396} a^{17} - \frac{11075205499}{17192718888557394043773277361622396} a^{16} + \frac{364822543638996878321311393}{4298179722139348510943319340405599} a^{15} - \frac{1587547559920212855743952424}{4298179722139348510943319340405599} a^{14} + \frac{27236746365870727617273129197}{8596359444278697021886638680811198} a^{13} - \frac{12581279923721674654447699361}{8596359444278697021886638680811198} a^{12} + \frac{464626783176456965404053069215}{8596359444278697021886638680811198} a^{11} - \frac{1783246366379161403641222000769}{8596359444278697021886638680811198} a^{10} + \frac{29605513830920612734196872047133}{17192718888557394043773277361622396} a^{9} + \frac{16822042053369520338915402190159}{17192718888557394043773277361622396} a^{8} + \frac{9193137812349329368167631909583}{781487222207154274716967152801018} a^{7} - \frac{26043439917459919010468432858305}{8596359444278697021886638680811198} a^{6} - \frac{121553256185460005060306579601529}{2456102698365342006253325337374628} a^{5} - \frac{2561596053467660224045345294931885}{17192718888557394043773277361622396} a^{4} - \frac{10684138617160283091641661656749}{614025674591335501563331334343657} a^{3} - \frac{327762645973860144683401732987079}{781487222207154274716967152801018} a^{2} - \frac{454395646986620479596959831432507}{1562974444414308549433934305602036} a + \frac{27597258582852752477928515726017}{142088585855846231766721300509276}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{28}\times C_{2261532}$, which has order $1013166336$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110172188.8644179 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-57}) \), 3.3.361.1, 3.3.3969.2, 3.3.1432809.2, 3.3.1432809.3, 6.0.4278699072.1, 6.0.20745515423808.9, 6.0.7489131067994688.4, 6.0.7489131067994688.2, 9.9.2941473244627851129.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19 | Data not computed | ||||||