Normalized defining polynomial
\( x^{18} - 6 x^{17} + 345 x^{16} - 1778 x^{15} + 50028 x^{14} - 219576 x^{13} + 3899592 x^{12} - 14341668 x^{11} + 171878073 x^{10} - 515196144 x^{9} + 4026740871 x^{8} - 9350526024 x^{7} + 37334377373 x^{6} - 58803238512 x^{5} - 60150628077 x^{4} + 133588777454 x^{3} + 167812083477 x^{2} - 218068968786 x + 185027482261 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-420043524447982694779997090972698756380285468672=-\,2^{18}\cdot 3^{27}\cdot 7^{12}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $442.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(683,·)$, $\chi_{4788}(2053,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(407,·)$, $\chi_{4788}(277,·)$, $\chi_{4788}(1367,·)$, $\chi_{4788}(1369,·)$, $\chi_{4788}(2459,·)$, $\chi_{4788}(1247,·)$, $\chi_{4788}(3299,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(2857,·)$, $\chi_{4788}(4103,·)$, $\chi_{4788}(1775,·)$, $\chi_{4788}(3697,·)$, $\chi_{4788}(2615,·)$, $\chi_{4788}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{3}{10}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10}$, $\frac{1}{370} a^{12} - \frac{2}{185} a^{11} - \frac{13}{370} a^{10} - \frac{1}{370} a^{9} - \frac{7}{37} a^{8} - \frac{62}{185} a^{7} + \frac{49}{185} a^{6} - \frac{67}{370} a^{5} + \frac{57}{370} a^{4} + \frac{133}{370} a^{3} - \frac{62}{185} a^{2} + \frac{151}{370} a - \frac{29}{74}$, $\frac{1}{370} a^{13} + \frac{4}{185} a^{11} - \frac{8}{185} a^{10} - \frac{71}{370} a^{8} + \frac{157}{370} a^{7} - \frac{4}{185} a^{6} - \frac{10}{37} a^{5} - \frac{83}{370} a^{4} - \frac{73}{370} a^{3} - \frac{49}{370} a^{2} - \frac{59}{370} a - \frac{173}{370}$, $\frac{1}{370} a^{14} + \frac{8}{185} a^{11} - \frac{7}{370} a^{10} + \frac{11}{370} a^{9} + \frac{51}{370} a^{8} + \frac{11}{185} a^{7} - \frac{181}{370} a^{6} + \frac{157}{370} a^{5} + \frac{10}{37} a^{4} - \frac{3}{370} a^{3} - \frac{14}{37} a^{2} + \frac{5}{74} a - \frac{12}{185}$, $\frac{1}{10730} a^{15} + \frac{2}{5365} a^{14} - \frac{11}{10730} a^{13} + \frac{7}{5365} a^{12} + \frac{347}{10730} a^{11} - \frac{1}{58} a^{10} + \frac{49}{2146} a^{9} - \frac{21}{290} a^{8} - \frac{9}{5365} a^{7} + \frac{309}{2146} a^{6} - \frac{721}{5365} a^{5} - \frac{354}{1073} a^{4} + \frac{607}{10730} a^{3} - \frac{688}{5365} a^{2} + \frac{1089}{10730} a - \frac{33}{74}$, $\frac{1}{26735414803020625450790882197460} a^{16} + \frac{163329529192236267076075311}{13367707401510312725395441098730} a^{15} - \frac{504993411834226067858083055}{2673541480302062545079088219746} a^{14} - \frac{217679179343679362681730704}{1336770740151031272539544109873} a^{13} + \frac{5501191175216720697892856191}{13367707401510312725395441098730} a^{12} - \frac{81751769088502096257826396}{36128938923000845203771462429} a^{11} - \frac{992502217149041942695269881}{2673541480302062545079088219746} a^{10} + \frac{316955546171444144281099053534}{6683853700755156362697720549365} a^{9} + \frac{4399418671715389770998599022419}{26735414803020625450790882197460} a^{8} - \frac{451801116553672567384206734504}{1336770740151031272539544109873} a^{7} - \frac{6682696024843181527348778041261}{13367707401510312725395441098730} a^{6} + \frac{1535363792348435082072784030326}{6683853700755156362697720549365} a^{5} - \frac{78146157595730476374207020625}{5347082960604125090158176439492} a^{4} - \frac{2319523314532400370607764786664}{6683853700755156362697720549365} a^{3} + \frac{1072183882038474241311723412773}{2673541480302062545079088219746} a^{2} - \frac{1233519494885703840881312149399}{2673541480302062545079088219746} a + \frac{119915150851543765521555932283}{921910855276573291406582144740}$, $\frac{1}{26034707112189941936654534241222707205558704260} a^{17} - \frac{261626197465273}{26034707112189941936654534241222707205558704260} a^{16} + \frac{266815432670048608821771951807814979943989}{6508676778047485484163633560305676801389676065} a^{15} - \frac{666385736808593112881049999033128855941753}{6508676778047485484163633560305676801389676065} a^{14} + \frac{1296217450873508022491123526975501775730599}{1301735355609497096832726712061135360277935213} a^{13} + \frac{7938650024794891421730785958328502435248062}{6508676778047485484163633560305676801389676065} a^{12} - \frac{193196084230965934223896681306583608505472691}{13017353556094970968327267120611353602779352130} a^{11} + \frac{80740247375830888221825793932397763670836395}{2603470711218994193665453424122270720555870426} a^{10} - \frac{827403083516412591998324539758737247676371391}{26034707112189941936654534241222707205558704260} a^{9} - \frac{3334499363122150455356686132681003780724478469}{26034707112189941936654534241222707205558704260} a^{8} + \frac{1689030064931834633534549986619301672540033678}{6508676778047485484163633560305676801389676065} a^{7} + \frac{534044180704611756353483282380363128109549839}{1301735355609497096832726712061135360277935213} a^{6} - \frac{1739865927602609288374406380063366649308902163}{5206941422437988387330906848244541441111740852} a^{5} + \frac{10185840633333484101062353018025657066297217483}{26034707112189941936654534241222707205558704260} a^{4} + \frac{2082936981798989957962397679248716929405992653}{13017353556094970968327267120611353602779352130} a^{3} - \frac{995136203967866421624179331313916807635861001}{2603470711218994193665453424122270720555870426} a^{2} - \frac{1755333443703873132663232157148990244089601323}{5206941422437988387330906848244541441111740852} a + \frac{2633543316806937678270193358952858279766763}{21896305392926780434528624256705388734700340}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{52}\times C_{1217892}$, which has order $1013286144$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42198260.232521206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-57}) \), 3.3.1432809.2, 3.3.1432809.1, 3.3.29241.2, \(\Q(\zeta_{7})^+\), 6.0.7489131067994688.4, 6.0.7489131067994688.3, 6.0.3119171623488.3, 6.0.28457497152.2, 9.9.2941473244627851129.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||