Normalized defining polynomial
\( x^{18} - 5 x^{17} + 24 x^{16} - 62 x^{15} + 205 x^{14} - 252 x^{13} + 776 x^{12} - 244 x^{11} + 2550 x^{10} + 2973 x^{9} + 7549 x^{8} + 15264 x^{7} + 15289 x^{6} + 27725 x^{5} + 28737 x^{4} + 13096 x^{3} + 37718 x^{2} - 5250 x + 15625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41963408025348177483649703=-\,13^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{115} a^{13} - \frac{47}{115} a^{12} - \frac{8}{23} a^{11} + \frac{22}{115} a^{10} - \frac{56}{115} a^{9} + \frac{36}{115} a^{8} - \frac{27}{115} a^{7} + \frac{2}{115} a^{6} - \frac{29}{115} a^{5} - \frac{2}{115} a^{4} + \frac{53}{115} a^{3} + \frac{7}{23} a^{2} - \frac{47}{115} a + \frac{1}{23}$, $\frac{1}{115} a^{14} + \frac{51}{115} a^{12} - \frac{18}{115} a^{11} - \frac{57}{115} a^{10} + \frac{49}{115} a^{9} + \frac{11}{23} a^{8} - \frac{2}{115} a^{7} - \frac{10}{23} a^{6} + \frac{3}{23} a^{5} - \frac{41}{115} a^{4} - \frac{4}{115} a^{3} - \frac{12}{115} a^{2} - \frac{19}{115} a + \frac{1}{23}$, $\frac{1}{44275} a^{15} + \frac{64}{44275} a^{14} + \frac{4}{4025} a^{13} - \frac{72}{1265} a^{12} + \frac{8501}{44275} a^{11} + \frac{6712}{44275} a^{10} + \frac{19}{6325} a^{9} + \frac{597}{1925} a^{8} - \frac{6429}{44275} a^{7} - \frac{3429}{44275} a^{6} + \frac{21132}{44275} a^{5} - \frac{4569}{44275} a^{4} + \frac{153}{575} a^{3} - \frac{13912}{44275} a^{2} + \frac{1369}{6325} a - \frac{674}{1771}$, $\frac{1}{60081175} a^{16} + \frac{24}{2403247} a^{15} + \frac{97103}{60081175} a^{14} + \frac{207019}{60081175} a^{13} - \frac{15116749}{60081175} a^{12} + \frac{245858}{60081175} a^{11} + \frac{4178393}{12016235} a^{10} - \frac{2285506}{5461925} a^{9} + \frac{27416892}{60081175} a^{8} - \frac{20062893}{60081175} a^{7} - \frac{21318602}{60081175} a^{6} - \frac{937119}{2612225} a^{5} - \frac{29113468}{60081175} a^{4} + \frac{18207599}{60081175} a^{3} + \frac{3798216}{60081175} a^{2} + \frac{9134033}{60081175} a + \frac{836086}{2403247}$, $\frac{1}{18221825541400758416437375} a^{17} + \frac{29438504690286228}{3644365108280151683287475} a^{16} + \frac{18372258668668256052}{2603117934485822630919625} a^{15} - \frac{252253718797082721319}{423763384683738567824125} a^{14} + \frac{766319360041610244752}{520623586897164526183925} a^{13} + \frac{797223123904911250880188}{1656529594672796219676125} a^{12} - \frac{7685772602813517297703174}{18221825541400758416437375} a^{11} + \frac{5824876930067037853916761}{18221825541400758416437375} a^{10} + \frac{27343945470094373355551}{66261183786911848787045} a^{9} - \frac{278891846879867275594446}{2603117934485822630919625} a^{8} - \frac{8626787348576032390837646}{18221825541400758416437375} a^{7} - \frac{5071138798257542528716211}{18221825541400758416437375} a^{6} + \frac{4587375801161133113914204}{18221825541400758416437375} a^{5} + \frac{1714082832841131213227091}{3644365108280151683287475} a^{4} - \frac{180176753832791847949388}{1656529594672796219676125} a^{3} - \frac{958370089728667308812602}{2603117934485822630919625} a^{2} - \frac{91250232381233871160899}{792253284408728626801625} a + \frac{44699383184331317545266}{145774604331206067331499}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105070.48842 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.1.1350739057369.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{18}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.9.6.2 | $x^{9} - 338 x^{3} + 13182$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 13.9.6.2 | $x^{9} - 338 x^{3} + 13182$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |