Normalized defining polynomial
\( x^{18} - 2 x^{17} + 3 x^{16} - 4 x^{15} + 23 x^{14} - 122 x^{13} + 265 x^{12} - 328 x^{11} + 344 x^{10} - 1400 x^{9} + 8884 x^{8} - 17408 x^{7} + 12688 x^{6} - 3968 x^{5} + 9216 x^{4} - 16384 x^{3} + 9216 x^{2} + 8192 x + 16384 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4172040398734878910471995392=-\,2^{18}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} + \frac{1}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{8} + \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{3}{128} a^{9} - \frac{5}{128} a^{8} + \frac{3}{32} a^{6} + \frac{1}{32} a^{5} + \frac{3}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{128} a^{14} + \frac{1}{128} a^{12} + \frac{3}{128} a^{10} - \frac{1}{128} a^{8} + \frac{3}{32} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{1024} a^{15} - \frac{1}{512} a^{14} + \frac{3}{1024} a^{13} + \frac{1}{256} a^{12} + \frac{15}{1024} a^{11} - \frac{5}{512} a^{10} - \frac{7}{1024} a^{9} + \frac{1}{32} a^{8} + \frac{3}{64} a^{7} + \frac{1}{128} a^{6} + \frac{5}{256} a^{5} + \frac{5}{32} a^{4} + \frac{15}{64} a^{3} + \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{59392} a^{16} - \frac{1}{14848} a^{15} - \frac{33}{59392} a^{14} + \frac{3}{29696} a^{13} - \frac{393}{59392} a^{12} + \frac{21}{7424} a^{11} + \frac{517}{59392} a^{10} - \frac{85}{29696} a^{9} - \frac{103}{3712} a^{8} - \frac{191}{7424} a^{7} + \frac{1161}{14848} a^{6} + \frac{659}{7424} a^{5} - \frac{341}{3712} a^{4} - \frac{159}{1856} a^{3} + \frac{171}{464} a^{2} - \frac{71}{232} a + \frac{3}{58}$, $\frac{1}{6392975270068299407360} a^{17} - \frac{11640049233651623}{3196487635034149703680} a^{16} + \frac{1073892436060979827}{6392975270068299407360} a^{15} + \frac{441586813224751741}{799121908758537425920} a^{14} - \frac{16899671346548475569}{6392975270068299407360} a^{13} + \frac{8437079081441207497}{3196487635034149703680} a^{12} - \frac{10680281893855321751}{6392975270068299407360} a^{11} + \frac{47522199001436798919}{1598243817517074851840} a^{10} - \frac{1704827813631683663}{79912190875853742592} a^{9} + \frac{3301341473821207417}{159824381751707485184} a^{8} + \frac{64592582654973746581}{1598243817517074851840} a^{7} + \frac{33520898130950453301}{399560954379268712960} a^{6} + \frac{31254203425966014919}{399560954379268712960} a^{5} - \frac{6381878683361070741}{99890238594817178240} a^{4} - \frac{10783642648493718251}{49945119297408589120} a^{3} - \frac{223723637500353883}{6243139912176073640} a^{2} + \frac{784058024079639893}{3121569956088036820} a - \frac{285667496611293842}{780392489022009205}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 365341428.034 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-293}) \), 3.1.1172.1 x3, 6.0.1609840448.1, 9.1.1886733005056.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 293 | Data not computed | ||||||