Normalized defining polynomial
\( x^{18} - 69 x^{16} - 76 x^{15} + 2439 x^{14} + 5700 x^{13} - 26645 x^{12} - 162564 x^{11} + 240744 x^{10} + 2377242 x^{9} + 7371690 x^{8} - 2498994 x^{7} - 10081135 x^{6} + 63660336 x^{5} + 1018042977 x^{4} + 3360208862 x^{3} + 8852161824 x^{2} + 11377676520 x + 13658762789 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41709759864743767520229789527327232000000000=-\,2^{18}\cdot 3^{24}\cdot 5^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $265.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3420=2^{2}\cdot 3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3420}(1,·)$, $\chi_{3420}(2821,·)$, $\chi_{3420}(3079,·)$, $\chi_{3420}(139,·)$, $\chi_{3420}(2221,·)$, $\chi_{3420}(2899,·)$, $\chi_{3420}(919,·)$, $\chi_{3420}(2581,·)$, $\chi_{3420}(1879,·)$, $\chi_{3420}(2779,·)$, $\chi_{3420}(481,·)$, $\chi_{3420}(859,·)$, $\chi_{3420}(3121,·)$, $\chi_{3420}(3241,·)$, $\chi_{3420}(1261,·)$, $\chi_{3420}(2479,·)$, $\chi_{3420}(1201,·)$, $\chi_{3420}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} - \frac{2}{49} a^{9} + \frac{3}{49} a^{8} - \frac{1}{49} a^{7} + \frac{3}{49} a^{6} - \frac{9}{49} a^{5} + \frac{12}{49} a^{4} - \frac{16}{49} a^{3} - \frac{19}{49} a^{2} - \frac{3}{7} a$, $\frac{1}{49} a^{11} - \frac{1}{49} a^{9} - \frac{2}{49} a^{8} + \frac{1}{49} a^{7} - \frac{3}{49} a^{6} - \frac{6}{49} a^{5} + \frac{8}{49} a^{4} - \frac{2}{49} a^{3} - \frac{3}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{49} a^{12} + \frac{3}{49} a^{9} - \frac{3}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{49} a^{6} - \frac{1}{49} a^{5} + \frac{10}{49} a^{4} + \frac{23}{49} a^{3} - \frac{5}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{343} a^{13} + \frac{3}{343} a^{12} - \frac{1}{343} a^{11} - \frac{3}{343} a^{10} - \frac{16}{343} a^{9} - \frac{22}{343} a^{8} + \frac{18}{343} a^{7} + \frac{10}{343} a^{6} - \frac{136}{343} a^{5} - \frac{104}{343} a^{4} + \frac{85}{343} a^{3} - \frac{129}{343} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{343} a^{14} - \frac{3}{343} a^{12} - \frac{16}{343} a^{9} - \frac{2}{49} a^{8} + \frac{19}{343} a^{7} - \frac{19}{343} a^{6} + \frac{136}{343} a^{5} + \frac{159}{343} a^{4} - \frac{139}{343} a^{3} - \frac{75}{343} a^{2} - \frac{1}{7}$, $\frac{1}{343} a^{15} + \frac{2}{343} a^{12} - \frac{3}{343} a^{11} + \frac{3}{343} a^{10} + \frac{8}{343} a^{9} + \frac{9}{343} a^{8} - \frac{2}{49} a^{7} - \frac{23}{343} a^{6} + \frac{45}{343} a^{5} - \frac{87}{343} a^{4} + \frac{159}{343} a^{3} + \frac{47}{343} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{373737259} a^{16} + \frac{208660}{373737259} a^{15} - \frac{498793}{373737259} a^{14} - \frac{277702}{373737259} a^{13} - \frac{1982728}{373737259} a^{12} + \frac{1002965}{373737259} a^{11} + \frac{3609689}{373737259} a^{10} + \frac{1101864}{373737259} a^{9} - \frac{24979240}{373737259} a^{8} - \frac{2386789}{53391037} a^{7} - \frac{2645242}{53391037} a^{6} + \frac{56684753}{373737259} a^{5} - \frac{129650526}{373737259} a^{4} - \frac{138785959}{373737259} a^{3} + \frac{131294342}{373737259} a^{2} - \frac{3296805}{7627291} a - \frac{792465}{7627291}$, $\frac{1}{669375521285522837450741166095415230850606119791243373} a^{17} + \frac{607474335542510050416372269571894404651922824}{669375521285522837450741166095415230850606119791243373} a^{16} - \frac{111252968328424149141911030618478175619739506309941}{669375521285522837450741166095415230850606119791243373} a^{15} - \frac{102300214180253970856918561746453188280371735897916}{669375521285522837450741166095415230850606119791243373} a^{14} - \frac{947621362235044237200636375887739260969983494965816}{669375521285522837450741166095415230850606119791243373} a^{13} + \frac{5036575947683159979481503820456550240841973074101680}{669375521285522837450741166095415230850606119791243373} a^{12} - \frac{1693207028530393404398567155514510096618530733237752}{669375521285522837450741166095415230850606119791243373} a^{11} + \frac{1898703836821273837553550117712874841913815353709363}{669375521285522837450741166095415230850606119791243373} a^{10} + \frac{36431998536524536011412551338804356937698198316080424}{669375521285522837450741166095415230850606119791243373} a^{9} - \frac{17587303498375025780685373238734392174638388280295721}{669375521285522837450741166095415230850606119791243373} a^{8} + \frac{157670232013915251643711346863969626695630365619842}{13660724924194343621443697267253372058175635097780477} a^{7} - \frac{28132826978523284936590460594824118154916984078673739}{669375521285522837450741166095415230850606119791243373} a^{6} - \frac{217159927113992048203827905786614503009152667307006864}{669375521285522837450741166095415230850606119791243373} a^{5} + \frac{250054822647760904945112534634045219167225933670890718}{669375521285522837450741166095415230850606119791243373} a^{4} + \frac{188221859300307725944770351564975673001356195637431458}{669375521285522837450741166095415230850606119791243373} a^{3} + \frac{49851886445191991785462762752869992782169703775839883}{669375521285522837450741166095415230850606119791243373} a^{2} - \frac{549920797435725093528725948944180805082499001526288}{1951532132027763374491956752464767436882233585397211} a + \frac{2289420187939694533761282882270507668932842179061227}{13660724924194343621443697267253372058175635097780477}$
Class group and class number
$C_{57}\times C_{1667022}$, which has order $95020254$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22027035.20428972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.361.1, 6.0.1042568000.1, 9.9.9025761726072081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.12.2 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ |
| 3.9.12.2 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ | |
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||