Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 119 x^{15} + 192 x^{14} - 138 x^{13} - 13 x^{12} - 216 x^{11} + 1170 x^{10} - 1803 x^{9} + 771 x^{8} + 1359 x^{7} - 1597 x^{6} + 228 x^{5} + 918 x^{4} - 314 x^{3} - 156 x^{2} + 132 x + 92 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-414297991288157786796374784=-\,2^{8}\cdot 3^{18}\cdot 11^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{3} a^{6} - \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{3} a^{7} - \frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{2}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{18} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9}$, $\frac{1}{90} a^{16} + \frac{1}{45} a^{15} + \frac{1}{15} a^{14} - \frac{2}{45} a^{13} - \frac{1}{18} a^{12} - \frac{2}{5} a^{11} + \frac{1}{90} a^{10} + \frac{19}{45} a^{9} - \frac{17}{90} a^{7} + \frac{7}{45} a^{6} + \frac{13}{30} a^{5} - \frac{1}{2} a^{4} - \frac{4}{15} a^{3} - \frac{2}{5} a^{2} - \frac{4}{45} a - \frac{8}{45}$, $\frac{1}{316034138859914024910} a^{17} + \frac{194209618065950551}{316034138859914024910} a^{16} - \frac{2907083273367227711}{316034138859914024910} a^{15} + \frac{258230091779686567}{63206827771982804982} a^{14} - \frac{5809992272848222448}{158017069429957012455} a^{13} + \frac{7270523951697530699}{316034138859914024910} a^{12} + \frac{17300717379255828821}{158017069429957012455} a^{11} + \frac{145756606801412145757}{316034138859914024910} a^{10} + \frac{29260987233484781951}{158017069429957012455} a^{9} - \frac{111175254540557291387}{316034138859914024910} a^{8} + \frac{154094574038258499661}{316034138859914024910} a^{7} + \frac{3871931336887293700}{31603413885991402491} a^{6} + \frac{10288256382632790779}{35114904317768224990} a^{5} - \frac{11179653455309467511}{35114904317768224990} a^{4} - \frac{3320845461728405147}{52672356476652337485} a^{3} - \frac{67320105393343061986}{158017069429957012455} a^{2} + \frac{47112050935277845286}{158017069429957012455} a - \frac{33865218744927759892}{158017069429957012455}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2125238.111612494 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.3267.1, 6.0.117406179.1, 9.3.557914162608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| 11 | Data not computed | ||||||