Normalized defining polynomial
\( x^{18} + 12 x^{16} - 40 x^{15} + 96 x^{14} - 444 x^{13} + 1674 x^{12} - 2472 x^{11} + 16878 x^{10} - 19734 x^{9} + 64794 x^{8} - 118380 x^{7} + 147569 x^{6} - 491256 x^{5} + 1646274 x^{4} - 2357414 x^{3} + 7131054 x^{2} - 6384660 x + 1632457 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41301528122037146650360676352=-\,2^{27}\cdot 3^{27}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{89} a^{16} - \frac{17}{89} a^{15} + \frac{28}{89} a^{14} + \frac{31}{89} a^{13} + \frac{24}{89} a^{12} + \frac{30}{89} a^{11} + \frac{41}{89} a^{10} + \frac{33}{89} a^{9} - \frac{38}{89} a^{8} + \frac{27}{89} a^{7} + \frac{38}{89} a^{6} - \frac{17}{89} a^{5} - \frac{21}{89} a^{4} + \frac{38}{89} a^{3} - \frac{34}{89} a^{2} + \frac{12}{89} a + \frac{18}{89}$, $\frac{1}{7383054706390234376833451675604630379508032344173083141} a^{17} - \frac{22564949852877845408643770118724286999656967439034940}{7383054706390234376833451675604630379508032344173083141} a^{16} + \frac{3447094102022699202757585329443793933226569862997291094}{7383054706390234376833451675604630379508032344173083141} a^{15} + \frac{1186631576165120216304122336480937552306171651193845193}{7383054706390234376833451675604630379508032344173083141} a^{14} - \frac{973913542433376483812210318271181954830091776032167762}{7383054706390234376833451675604630379508032344173083141} a^{13} - \frac{2865033397762003424807593611260387559966045753420872293}{7383054706390234376833451675604630379508032344173083141} a^{12} - \frac{1012867087043905910002381726810721660296564864459204040}{7383054706390234376833451675604630379508032344173083141} a^{11} - \frac{3593680067311627913097642914519325662283230011172480629}{7383054706390234376833451675604630379508032344173083141} a^{10} + \frac{3121245347744445956492272451957469076384296958941678125}{7383054706390234376833451675604630379508032344173083141} a^{9} - \frac{1404621026085173906602000733340931687936281382523901800}{7383054706390234376833451675604630379508032344173083141} a^{8} + \frac{3352831557639349372385787809509313984556448237781726998}{7383054706390234376833451675604630379508032344173083141} a^{7} - \frac{3609296784007349520306978467832023239558481678711684018}{7383054706390234376833451675604630379508032344173083141} a^{6} + \frac{3292357528970970969385600935501572968466229556445211746}{7383054706390234376833451675604630379508032344173083141} a^{5} - \frac{2946698537012821568788333062972858736132850767080752801}{7383054706390234376833451675604630379508032344173083141} a^{4} - \frac{1630395399687945352839406902914076886585894804720323939}{7383054706390234376833451675604630379508032344173083141} a^{3} + \frac{2756425849993761381310985658177382861070597012727475251}{7383054706390234376833451675604630379508032344173083141} a^{2} - \frac{701452602225919580418603030679545132717165056225023530}{7383054706390234376833451675604630379508032344173083141} a + \frac{3489279697876563075988118119693447591135359744318823914}{7383054706390234376833451675604630379508032344173083141}$
Class group and class number
$C_{2}\times C_{2}\times C_{26}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55250.70198920589 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), \(\Q(\zeta_{9})^+\), 3.1.648.1, 6.0.3456649728.1, 6.0.3456649728.10, 9.3.272097792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |