Normalized defining polynomial
\( x^{18} - 3 x^{17} + 52 x^{16} - 252 x^{15} + 1402 x^{14} - 7266 x^{13} + 25794 x^{12} - 86808 x^{11} + 256538 x^{10} - 407056 x^{9} + 647468 x^{8} - 1953586 x^{7} + 6247014 x^{6} - 12462682 x^{5} + 21097703 x^{4} - 27033887 x^{3} + 29682552 x^{2} - 16477776 x + 14492736 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-410403006358127324860166545115234375=-\,5^{9}\cdot 7^{12}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(665=5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{665}(1,·)$, $\chi_{665}(449,·)$, $\chi_{665}(11,·)$, $\chi_{665}(464,·)$, $\chi_{665}(274,·)$, $\chi_{665}(596,·)$, $\chi_{665}(569,·)$, $\chi_{665}(284,·)$, $\chi_{665}(354,·)$, $\chi_{665}(571,·)$, $\chi_{665}(296,·)$, $\chi_{665}(106,·)$, $\chi_{665}(191,·)$, $\chi_{665}(179,·)$, $\chi_{665}(501,·)$, $\chi_{665}(121,·)$, $\chi_{665}(379,·)$, $\chi_{665}(639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{22} a^{12} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{22} a^{9} - \frac{5}{22} a^{8} + \frac{3}{11} a^{7} - \frac{3}{11} a^{6} - \frac{3}{22} a^{5} + \frac{3}{11} a^{4} - \frac{1}{11} a^{3} - \frac{1}{22} a^{2} - \frac{1}{22} a - \frac{3}{11}$, $\frac{1}{22} a^{13} - \frac{1}{11} a^{11} + \frac{1}{22} a^{10} - \frac{2}{11} a^{9} + \frac{5}{22} a^{8} + \frac{2}{11} a^{7} + \frac{9}{22} a^{6} - \frac{5}{11} a^{5} + \frac{4}{11} a^{4} + \frac{3}{22} a^{3} - \frac{5}{11} a^{2} + \frac{7}{22} a - \frac{5}{11}$, $\frac{1}{44} a^{14} - \frac{1}{44} a^{13} - \frac{1}{44} a^{12} + \frac{5}{44} a^{11} - \frac{3}{44} a^{10} + \frac{3}{44} a^{9} + \frac{5}{44} a^{8} - \frac{1}{4} a^{7} + \frac{19}{44} a^{6} + \frac{15}{44} a^{5} + \frac{1}{44} a^{4} - \frac{15}{44} a^{3} - \frac{17}{44} a^{2} - \frac{7}{44} a + \frac{1}{11}$, $\frac{1}{8404} a^{15} + \frac{9}{8404} a^{14} - \frac{13}{8404} a^{13} - \frac{135}{8404} a^{12} + \frac{15}{764} a^{11} + \frac{1537}{8404} a^{10} - \frac{629}{8404} a^{9} - \frac{1389}{8404} a^{8} + \frac{3785}{8404} a^{7} - \frac{2641}{8404} a^{6} - \frac{357}{764} a^{5} - \frac{1175}{8404} a^{4} + \frac{3849}{8404} a^{3} + \frac{2151}{8404} a^{2} - \frac{745}{4202} a - \frac{703}{2101}$, $\frac{1}{100848} a^{16} - \frac{119}{25212} a^{14} + \frac{47}{4202} a^{13} + \frac{881}{50424} a^{12} - \frac{2033}{8404} a^{11} + \frac{9}{16808} a^{10} - \frac{1389}{16808} a^{9} - \frac{1489}{6303} a^{8} + \frac{4723}{12606} a^{7} - \frac{7741}{25212} a^{6} - \frac{2207}{50424} a^{5} + \frac{629}{8404} a^{4} + \frac{2473}{50424} a^{3} + \frac{11621}{100848} a^{2} - \frac{2513}{6303} a - \frac{189}{2101}$, $\frac{1}{122603328004871283664906736020391078061492737247700272} a^{17} + \frac{7406118114141296049258211030006029575973858495}{6811296000270626870272596445577282114527374291538904} a^{16} - \frac{159592058145728742129937534164778212092983907021}{7662708000304455229056671001274442378843296077981267} a^{15} + \frac{16383425456773948015706955012478505949419850989291}{5108472000202970152704447334182961585895530718654178} a^{14} + \frac{58732640579824455532614167253989727089905775785505}{61301664002435641832453368010195539030746368623850136} a^{13} + \frac{8264261026667117598339019400243061372941723298621}{851412000033828358784074555697160264315921786442363} a^{12} - \frac{883601398153368151505842164261491742401405263103705}{6811296000270626870272596445577282114527374291538904} a^{11} - \frac{2025738218228328263178804929064864330971708881928039}{20433888000811880610817789336731846343582122874616712} a^{10} + \frac{1582978106393155263304419784030621026263176311949259}{30650832001217820916226684005097769515373184311925068} a^{9} - \frac{3482054987382692274275550105184709606104106266908011}{15325416000608910458113342002548884757686592155962534} a^{8} + \frac{8031248429191573333720604497550913851828379412990145}{30650832001217820916226684005097769515373184311925068} a^{7} + \frac{5707598820819411552220955956509582617572737318532357}{61301664002435641832453368010195539030746368623850136} a^{6} - \frac{204696949527378340277049147507512070388101945083881}{5108472000202970152704447334182961585895530718654178} a^{5} - \frac{8082591389665076340788265081087200512410122770289123}{61301664002435641832453368010195539030746368623850136} a^{4} - \frac{47248925382627940657144812556344676165211801121887071}{122603328004871283664906736020391078061492737247700272} a^{3} + \frac{28314173943052309289707474538264237413664805645730139}{61301664002435641832453368010195539030746368623850136} a^{2} - \frac{413770777304201490409786985890239345325962018700943}{928813090945994573218990424396902106526460130664396} a + \frac{34785263298819950827427895838279404104775512243389}{851412000033828358784074555697160264315921786442363}$
Class group and class number
$C_{2}\times C_{26}\times C_{728}$, which has order $37856$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 833965.243856 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), 3.3.17689.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 3.3.361.1, 6.0.743139212375.1, 6.0.743139212375.2, 6.0.2058557375.2, 6.0.309512375.1, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19 | Data not computed | ||||||