Properties

Label 18.0.40891490652...8243.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{45}\cdot 7^{12}$
Root discriminant $57.04$
Ramified primes $3, 7$
Class number $327$ (GRH)
Class group $[327]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![40353607, 0, 0, 0, 0, 0, 0, 0, 0, -5831, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 5831*x^9 + 40353607)
 
gp: K = bnfinit(x^18 - 5831*x^9 + 40353607, 1)
 

Normalized defining polynomial

\( x^{18} - 5831 x^{9} + 40353607 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-40891490652933723328906846968243=-\,3^{45}\cdot 7^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(189=3^{3}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{189}(64,·)$, $\chi_{189}(1,·)$, $\chi_{189}(134,·)$, $\chi_{189}(71,·)$, $\chi_{189}(8,·)$, $\chi_{189}(137,·)$, $\chi_{189}(74,·)$, $\chi_{189}(11,·)$, $\chi_{189}(149,·)$, $\chi_{189}(86,·)$, $\chi_{189}(23,·)$, $\chi_{189}(88,·)$, $\chi_{189}(25,·)$, $\chi_{189}(184,·)$, $\chi_{189}(121,·)$, $\chi_{189}(58,·)$, $\chi_{189}(151,·)$, $\chi_{189}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{7} a^{4}$, $\frac{1}{7} a^{5}$, $\frac{1}{49} a^{6}$, $\frac{1}{49} a^{7}$, $\frac{1}{49} a^{8}$, $\frac{1}{6517} a^{9} + \frac{1}{19}$, $\frac{1}{6517} a^{10} + \frac{1}{19} a$, $\frac{1}{45619} a^{11} + \frac{39}{133} a^{2}$, $\frac{1}{319333} a^{12} + \frac{39}{931} a^{3}$, $\frac{1}{319333} a^{13} + \frac{39}{931} a^{4}$, $\frac{1}{2235331} a^{14} - \frac{360}{6517} a^{5}$, $\frac{1}{15647317} a^{15} - \frac{360}{45619} a^{6}$, $\frac{1}{15647317} a^{16} - \frac{360}{45619} a^{7}$, $\frac{1}{109531219} a^{17} - \frac{360}{319333} a^{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{327}$, which has order $327$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{8}{15647317} a^{15} - \frac{87}{45619} a^{6} \) (order $18$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10392888.2142 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.9.3691950281939241.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R $18$ R $18$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ $18$ $18$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$7$7.9.6.3$x^{9} - 14 x^{6} + 49 x^{3} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
7.9.6.3$x^{9} - 14 x^{6} + 49 x^{3} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$