Normalized defining polynomial
\( x^{18} - 9 x^{17} + 12 x^{16} - 410 x^{15} + 10995 x^{14} - 9861 x^{13} + 162726 x^{12} - 3204009 x^{11} + 24015348 x^{10} + 104943021 x^{9} + 1568694924 x^{8} - 152631309 x^{7} + 19476958064 x^{6} + 109343418069 x^{5} + 2476828380501 x^{4} + 13611173843684 x^{3} + 68512294190292 x^{2} + 162135328484937 x + 329489799094441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4083569424758367433043797712456360033585527698911232=-\,2^{12}\cdot 3^{27}\cdot 29^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{111} a^{12} - \frac{2}{37} a^{11} - \frac{1}{111} a^{10} - \frac{14}{111} a^{9} + \frac{16}{37} a^{8} - \frac{26}{111} a^{7} - \frac{43}{111} a^{6} - \frac{18}{37} a^{5} - \frac{4}{111} a^{4} - \frac{12}{37} a^{3} - \frac{3}{37} a^{2} - \frac{4}{111} a - \frac{10}{111}$, $\frac{1}{111} a^{13} + \frac{17}{111} a^{10} + \frac{1}{111} a^{9} + \frac{1}{37} a^{8} - \frac{14}{111} a^{7} - \frac{16}{111} a^{6} + \frac{14}{37} a^{5} - \frac{23}{111} a^{4} + \frac{34}{111} a^{3} - \frac{7}{37} a^{2} + \frac{1}{37} a - \frac{23}{111}$, $\frac{1}{111} a^{14} + \frac{17}{111} a^{11} + \frac{1}{111} a^{10} + \frac{1}{37} a^{9} - \frac{14}{111} a^{8} - \frac{16}{111} a^{7} + \frac{14}{37} a^{6} - \frac{23}{111} a^{5} + \frac{34}{111} a^{4} - \frac{7}{37} a^{3} + \frac{1}{37} a^{2} - \frac{23}{111} a$, $\frac{1}{333} a^{15} + \frac{1}{333} a^{14} - \frac{1}{333} a^{12} + \frac{52}{333} a^{11} - \frac{52}{333} a^{10} - \frac{55}{333} a^{9} - \frac{43}{333} a^{8} + \frac{13}{333} a^{7} - \frac{44}{111} a^{6} + \frac{7}{111} a^{5} + \frac{11}{333} a^{4} + \frac{1}{333} a^{3} - \frac{154}{333} a^{2} + \frac{86}{333} a - \frac{116}{333}$, $\frac{1}{333} a^{16} - \frac{1}{333} a^{14} - \frac{1}{333} a^{13} - \frac{1}{333} a^{12} - \frac{2}{333} a^{11} + \frac{17}{111} a^{10} - \frac{1}{37} a^{9} + \frac{17}{333} a^{8} - \frac{73}{333} a^{7} - \frac{26}{111} a^{6} + \frac{20}{333} a^{5} - \frac{127}{333} a^{4} + \frac{13}{333} a^{3} - \frac{18}{37} a^{2} + \frac{14}{333} a - \frac{121}{333}$, $\frac{1}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{17} + \frac{390303671233046708763393578303654914963883266478907931911846042731057362}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{16} + \frac{296465186874556702827985852453054821043583557009584296548327213913775374}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{15} + \frac{1204692820188188615400592710423830692802245575058641993696874993879230556}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{14} + \frac{1186806070322637284768533793049468849654239008194979435326610166473707976}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{13} + \frac{173395540370684843188327430872302991775871312096660620016712647417806368}{102002559948633377212269351229174842541663302692720080480223094753052214367} a^{12} - \frac{14720751555893934835055204591716736003561096280859806992850350083100970629}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{11} + \frac{1569638482283284102469050290384151722871899713207518342314594362384828167}{102002559948633377212269351229174842541663302692720080480223094753052214367} a^{10} + \frac{46655600068316702028717806638650315247424003598081911021779832020977886241}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{9} - \frac{115931748977210971229092445181306992895904929779323456160359577726619721265}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{8} - \frac{152880249683174539019104419687307029133836902892399248297068273139355927736}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{7} + \frac{106467978162645780586266275354413003820861780871603132949301530070733355721}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{6} - \frac{28237400148399071337313473581215191233255938754417534045555437505546022266}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{5} - \frac{36303290029270610370738510975728826413436384871120756837628404440855058378}{102002559948633377212269351229174842541663302692720080480223094753052214367} a^{4} + \frac{108787696440466452918910791184348284037776683226541239612235879772246273224}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{3} - \frac{59795842462240040315413458528199545967255982383455217197492736868567253070}{306007679845900131636808053687524527624989908078160241440669284259156643101} a^{2} - \frac{65106308587312698532987900441568367872958117961116397363723594733579327939}{306007679845900131636808053687524527624989908078160241440669284259156643101} a - \frac{29530618164023987138367548741680313757435277959555382707084966499605310081}{306007679845900131636808053687524527624989908078160241440669284259156643101}$
Class group and class number
$C_{3}\times C_{3}\times C_{378}\times C_{4455864}$, which has order $15158849328$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118546543.87559307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.3.110889.1, 3.3.148.1, 6.0.899688527276607.1, 6.0.14423849712.4, 9.9.3228844269788073792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.12.6.1 | $x^{12} + 146334 x^{6} - 20511149 x^{2} + 5353409889$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |