Normalized defining polynomial
\( x^{18} + 6 x^{16} - 6 x^{15} + 6 x^{14} - 24 x^{13} + 15 x^{12} + 12 x^{11} + 84 x^{10} + 68 x^{9} + 84 x^{8} + 12 x^{7} + 15 x^{6} - 24 x^{5} + 6 x^{4} - 6 x^{3} + 6 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-408300165580224540672=-\,2^{12}\cdot 3^{25}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{8} a^{13} - \frac{1}{16} a^{12} - \frac{1}{32} a^{11} + \frac{3}{32} a^{10} - \frac{3}{32} a^{9} + \frac{1}{32} a^{8} - \frac{5}{32} a^{7} + \frac{7}{32} a^{6} + \frac{1}{32} a^{5} - \frac{3}{32} a^{4} - \frac{7}{16} a^{3} + \frac{1}{8} a^{2} - \frac{11}{32} a + \frac{11}{32}$, $\frac{1}{704} a^{16} + \frac{1}{88} a^{15} - \frac{85}{704} a^{14} - \frac{39}{352} a^{13} - \frac{27}{704} a^{12} + \frac{29}{352} a^{11} + \frac{1}{8} a^{10} + \frac{43}{352} a^{9} + \frac{17}{176} a^{8} + \frac{21}{352} a^{7} - \frac{1}{4} a^{6} - \frac{125}{352} a^{5} + \frac{215}{704} a^{4} - \frac{149}{352} a^{3} - \frac{63}{704} a^{2} + \frac{3}{22} a + \frac{155}{704}$, $\frac{1}{1408} a^{17} - \frac{1}{1408} a^{16} + \frac{19}{1408} a^{15} + \frac{159}{1408} a^{14} + \frac{147}{1408} a^{13} - \frac{51}{1408} a^{12} + \frac{135}{704} a^{11} + \frac{175}{704} a^{10} + \frac{175}{704} a^{9} - \frac{109}{704} a^{8} - \frac{101}{704} a^{7} - \frac{213}{704} a^{6} - \frac{351}{1408} a^{5} + \frac{21}{128} a^{4} - \frac{21}{1408} a^{3} + \frac{135}{1408} a^{2} - \frac{533}{1408} a + \frac{13}{1408}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1049}{704} a^{17} + \frac{53}{352} a^{16} + \frac{5939}{704} a^{15} - \frac{685}{88} a^{14} + \frac{3569}{704} a^{13} - \frac{5375}{176} a^{12} + \frac{2591}{176} a^{11} + \frac{11315}{352} a^{10} + \frac{2549}{22} a^{9} + \frac{38185}{352} a^{8} + \frac{17893}{176} a^{7} + \frac{4483}{352} a^{6} + \frac{763}{704} a^{5} - \frac{413}{16} a^{4} + \frac{2149}{704} a^{3} + \frac{985}{352} a^{2} + \frac{2851}{704} a + \frac{763}{352} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4190.38862513 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 3.1.108.1 x3, 6.0.1714608.1, 6.0.34992.1, 9.3.11666192832.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.1000188.1 |
| Degree 9 sibling: | 9.3.11666192832.1 |
| Degree 12 sibling: | 12.0.9003384318096.1 |
| Degree 18 siblings: | Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |