Normalized defining polynomial
\( x^{18} + 9 x^{16} + 45 x^{14} - 27 x^{13} + 282 x^{12} - 459 x^{11} + 1116 x^{10} - 1217 x^{9} + 1647 x^{8} - 1386 x^{7} + 1494 x^{6} - 1017 x^{5} + 567 x^{4} - 201 x^{3} + 54 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-405255515301897626700000000=-\,2^{8}\cdot 3^{39}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{3} - \frac{1}{9}$, $\frac{1}{9} a^{10} - \frac{1}{3} a^{4} - \frac{1}{9} a$, $\frac{1}{9} a^{11} - \frac{1}{3} a^{5} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{12} - \frac{1}{3} a^{6} - \frac{1}{9} a^{3}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{9} a^{7} + \frac{4}{9} a^{6} + \frac{2}{27} a^{4} + \frac{7}{27} a^{3} + \frac{1}{27} a + \frac{8}{27}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{2}{27} a^{5} + \frac{1}{3} a^{4} + \frac{7}{27} a^{3} + \frac{1}{27} a^{2} + \frac{1}{3} a + \frac{8}{27}$, $\frac{1}{2970} a^{15} + \frac{1}{90} a^{14} - \frac{7}{594} a^{13} - \frac{41}{990} a^{12} + \frac{8}{165} a^{11} - \frac{1}{2970} a^{10} + \frac{2}{135} a^{9} - \frac{16}{33} a^{8} + \frac{281}{990} a^{7} - \frac{482}{1485} a^{6} + \frac{221}{495} a^{5} - \frac{223}{2970} a^{4} + \frac{9}{110} a^{3} + \frac{1}{110} a^{2} + \frac{248}{1485} a - \frac{731}{2970}$, $\frac{1}{2970} a^{16} - \frac{4}{495} a^{14} + \frac{7}{495} a^{13} + \frac{133}{2970} a^{12} + \frac{29}{990} a^{11} + \frac{7}{270} a^{10} - \frac{71}{1485} a^{9} + \frac{19}{110} a^{8} - \frac{1063}{2970} a^{7} - \frac{197}{495} a^{6} - \frac{67}{990} a^{5} + \frac{112}{495} a^{4} + \frac{349}{1485} a^{3} + \frac{47}{198} a^{2} - \frac{1259}{2970} a - \frac{127}{270}$, $\frac{1}{1713690} a^{17} + \frac{118}{856845} a^{16} - \frac{4}{25965} a^{15} + \frac{4618}{285615} a^{14} - \frac{13}{38082} a^{13} + \frac{443}{10386} a^{12} + \frac{68219}{1713690} a^{11} + \frac{958}{171369} a^{10} - \frac{1597}{63470} a^{9} + \frac{117673}{342738} a^{8} - \frac{62300}{171369} a^{7} + \frac{113869}{571230} a^{6} - \frac{90974}{285615} a^{5} - \frac{16648}{57123} a^{4} - \frac{251579}{571230} a^{3} + \frac{429901}{1713690} a^{2} - \frac{500941}{1713690} a - \frac{3589}{95205}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{191977}{856845} a^{17} - \frac{65111}{1713690} a^{16} - \frac{3475313}{1713690} a^{15} - \frac{590951}{1713690} a^{14} - \frac{17459759}{1713690} a^{13} + \frac{3695513}{856845} a^{12} - \frac{107442821}{1713690} a^{11} + \frac{15817060}{171369} a^{10} - \frac{202112518}{856845} a^{9} + \frac{402311819}{1713690} a^{8} - \frac{287019143}{856845} a^{7} + \frac{222470161}{856845} a^{6} - \frac{513937441}{1713690} a^{5} + \frac{315514313}{1713690} a^{4} - \frac{35698175}{342738} a^{3} + \frac{27240304}{856845} a^{2} - \frac{17310397}{1713690} a + \frac{1451878}{856845} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1060591.9742133385 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.11622614670000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |