Normalized defining polynomial
\( x^{18} - 6 x^{17} + 25 x^{16} - 101 x^{15} + 323 x^{14} - 917 x^{13} + 2199 x^{12} - 4227 x^{11} + 7049 x^{10} - 9906 x^{9} + 12946 x^{8} - 17477 x^{7} + 22549 x^{6} - 26741 x^{5} + 27005 x^{4} - 18930 x^{3} + 14889 x^{2} - 5565 x + 877 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4001925539052664141228388352=-\,2^{12}\cdot 3^{12}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{15} + \frac{5}{11} a^{14} + \frac{1}{11} a^{13} + \frac{1}{11} a^{12} - \frac{3}{11} a^{11} + \frac{3}{11} a^{10} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a - \frac{3}{11}$, $\frac{1}{902642945799972723745898076368197} a^{17} - \frac{29452627690310896139802798781964}{902642945799972723745898076368197} a^{16} + \frac{85009079218917464932995445962144}{902642945799972723745898076368197} a^{15} + \frac{127924330939358556407956462781367}{902642945799972723745898076368197} a^{14} + \frac{993528093624665096604848610537}{82058449618179338522354370578927} a^{13} + \frac{88158191944822469169810380031395}{902642945799972723745898076368197} a^{12} + \frac{354416860640851020781411483855867}{902642945799972723745898076368197} a^{11} + \frac{407428148466206473979538630862675}{902642945799972723745898076368197} a^{10} + \frac{414052753868236939473621295930635}{902642945799972723745898076368197} a^{9} - \frac{212082882540360916909844436171100}{902642945799972723745898076368197} a^{8} - \frac{309657173008507765236477916507708}{902642945799972723745898076368197} a^{7} + \frac{27906042888968278701771656925512}{902642945799972723745898076368197} a^{6} - \frac{134176204726140652642896772356237}{902642945799972723745898076368197} a^{5} + \frac{47652868587755795549440791263250}{902642945799972723745898076368197} a^{4} - \frac{19984994033497066267536310232088}{902642945799972723745898076368197} a^{3} + \frac{69893567619156068977335332712489}{902642945799972723745898076368197} a^{2} + \frac{398867937858297549110622745696788}{902642945799972723745898076368197} a - \frac{268237608772222586510415753162919}{902642945799972723745898076368197}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 217021.279396 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.321.1, 6.0.99228483.4, 9.3.6350622912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| 107 | Data not computed | ||||||