Normalized defining polynomial
\( x^{18} - 5 x^{17} + 26 x^{16} - 98 x^{15} + 1015 x^{14} - 3133 x^{13} + 22318 x^{12} - 56341 x^{11} + 448088 x^{10} - 819803 x^{9} + 6431560 x^{8} - 9409373 x^{7} + 73631164 x^{6} - 71250155 x^{5} + 603793415 x^{4} - 329016700 x^{3} + 3333390128 x^{2} - 293112723 x + 9397502237 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39938750212536083623342446592174713370832896=-\,2^{12}\cdot 31^{9}\cdot 79^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $264.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3583422} a^{16} + \frac{3019}{1194474} a^{15} - \frac{40043}{1194474} a^{14} - \frac{167701}{1791711} a^{13} - \frac{6057}{199079} a^{12} + \frac{113113}{597237} a^{11} - \frac{803155}{1791711} a^{10} - \frac{402388}{1791711} a^{9} - \frac{422564}{1791711} a^{8} - \frac{74977}{199079} a^{7} - \frac{31610}{199079} a^{6} - \frac{239782}{1791711} a^{5} + \frac{64850}{597237} a^{4} - \frac{466751}{1791711} a^{3} + \frac{124143}{398158} a^{2} + \frac{1577599}{3583422} a - \frac{838529}{3583422}$, $\frac{1}{3119483810763033967575609799768166194816405634549546972463177498} a^{17} - \frac{12602472671875693974866574890976868303091327565517132121}{1039827936921011322525203266589388731605468544849848990821059166} a^{16} - \frac{25080200465577551477162496013545907970123215795180607802091811}{346609312307003774175067755529796243868489514949949663607019722} a^{15} - \frac{80886504462182647376170934868295147152701673165695439838955062}{1559741905381516983787804899884083097408202817274773486231588749} a^{14} - \frac{51472152235527743827896117377475980389157790672390851315968657}{519913968460505661262601633294694365802734272424924495410529583} a^{13} + \frac{47623362468095420470728266403147495863650271976561995587492184}{519913968460505661262601633294694365802734272424924495410529583} a^{12} + \frac{23764551328932789119161546101696188018333264789706025241911541}{1559741905381516983787804899884083097408202817274773486231588749} a^{11} - \frac{642587699624087999368514250461351763761010269767017857943140383}{1559741905381516983787804899884083097408202817274773486231588749} a^{10} + \frac{45536977252810279389662051015552142312158208216915806978793922}{1559741905381516983787804899884083097408202817274773486231588749} a^{9} - \frac{100649556974504519683585306940812966358296632317852794339139077}{519913968460505661262601633294694365802734272424924495410529583} a^{8} + \frac{259431502286395530157091524882979470435117470192413369870992772}{519913968460505661262601633294694365802734272424924495410529583} a^{7} - \frac{248713380100386520057174812266228099727340969971381124340634382}{1559741905381516983787804899884083097408202817274773486231588749} a^{6} + \frac{71218032362658861883713676382681400952751611304453567973839341}{519913968460505661262601633294694365802734272424924495410529583} a^{5} - \frac{298510551231283810613548692003237204473588553416375541874194245}{1559741905381516983787804899884083097408202817274773486231588749} a^{4} - \frac{121489988536141814703599543328059642433684313032773506625811073}{346609312307003774175067755529796243868489514949949663607019722} a^{3} + \frac{1307412821796309424630803859550402939842046966072950739674642465}{3119483810763033967575609799768166194816405634549546972463177498} a^{2} - \frac{966389530198520512389007758473690032690572231010732151578228997}{3119483810763033967575609799768166194816405634549546972463177498} a - \frac{28296561360544872531502176602147710216762260602706633905050752}{173304656153501887087533877764898121934244757474974831803509861}$
Class group and class number
$C_{3}\times C_{8628984}$, which has order $25886952$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9044146.559729666 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.6241.1, 3.3.316.1, 6.0.1160361863071.1, 6.0.2974810096.1, 9.9.1229050175114176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $79$ | 79.6.4.1 | $x^{6} + 632 x^{3} + 168507$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 79.12.10.1 | $x^{12} - 790 x^{6} + 4549689$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |