Normalized defining polynomial
\( x^{18} - 7 x^{17} + 33 x^{16} - 106 x^{15} + 513 x^{14} - 1911 x^{13} + 8905 x^{12} - 28707 x^{11} + 113286 x^{10} - 312000 x^{9} + 1072652 x^{8} - 2391737 x^{7} + 6978401 x^{6} - 11975323 x^{5} + 30556226 x^{4} - 38411315 x^{3} + 83255438 x^{2} - 59181109 x + 96478091 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3981163315919720752483315106924610739=-\,19^{9}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(703=19\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(322,·)$, $\chi_{703}(645,·)$, $\chi_{703}(379,·)$, $\chi_{703}(75,·)$, $\chi_{703}(588,·)$, $\chi_{703}(514,·)$, $\chi_{703}(343,·)$, $\chi_{703}(417,·)$, $\chi_{703}(419,·)$, $\chi_{703}(229,·)$, $\chi_{703}(552,·)$, $\chi_{703}(493,·)$, $\chi_{703}(303,·)$, $\chi_{703}(305,·)$, $\chi_{703}(626,·)$, $\chi_{703}(248,·)$, $\chi_{703}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} + \frac{10}{43} a^{14} + \frac{17}{43} a^{13} + \frac{11}{43} a^{12} + \frac{13}{43} a^{11} + \frac{20}{43} a^{10} - \frac{18}{43} a^{9} + \frac{4}{43} a^{8} + \frac{5}{43} a^{7} + \frac{11}{43} a^{6} + \frac{6}{43} a^{5} + \frac{12}{43} a^{4} - \frac{11}{43} a^{2} - \frac{16}{43} a - \frac{6}{43}$, $\frac{1}{97309} a^{16} + \frac{249}{97309} a^{15} - \frac{9117}{97309} a^{14} - \frac{27144}{97309} a^{13} + \frac{43707}{97309} a^{12} + \frac{42859}{97309} a^{11} - \frac{578}{1333} a^{10} + \frac{11999}{97309} a^{9} - \frac{16239}{97309} a^{8} + \frac{44421}{97309} a^{7} + \frac{41077}{97309} a^{6} - \frac{4230}{97309} a^{5} + \frac{42385}{97309} a^{4} - \frac{46494}{97309} a^{3} - \frac{4064}{97309} a^{2} + \frac{14230}{97309} a - \frac{20311}{97309}$, $\frac{1}{354444690504687344018851216356591317119754553065543} a^{17} + \frac{943791704343810263122051173770727699019496242}{354444690504687344018851216356591317119754553065543} a^{16} + \frac{140450615627423676095506097705961034332594046409}{354444690504687344018851216356591317119754553065543} a^{15} - \frac{150630897070597802904094716650605544466033408536178}{354444690504687344018851216356591317119754553065543} a^{14} + \frac{4007776215791604951559027347993743100573114130977}{11433699693699591742543587624406171519992082356953} a^{13} - \frac{81316997165796259623859767222009199700470284012897}{354444690504687344018851216356591317119754553065543} a^{12} - \frac{86407038682579555485694413880363515621018210928776}{354444690504687344018851216356591317119754553065543} a^{11} - \frac{100797364990782654736657720664966553502041240637872}{354444690504687344018851216356591317119754553065543} a^{10} + \frac{79824043281375286661005973400389638517040641079003}{354444690504687344018851216356591317119754553065543} a^{9} + \frac{97580262985652418471161191989992612205385547925654}{354444690504687344018851216356591317119754553065543} a^{8} + \frac{465039527876614175253447450818022309683157195944}{8242899779178775442298865496664914351622198908501} a^{7} - \frac{82822069679869983744521508316165199969126364427732}{354444690504687344018851216356591317119754553065543} a^{6} - \frac{1509359495261214589119588778076319473951226590}{2378823426205955328985578633265713537716473510507} a^{5} + \frac{142184673299044187782436201960196521429370127622708}{354444690504687344018851216356591317119754553065543} a^{4} - \frac{51545453448447285215522957196082606684185829811423}{354444690504687344018851216356591317119754553065543} a^{3} + \frac{59769906879069382426518399220540684538780697172841}{354444690504687344018851216356591317119754553065543} a^{2} + \frac{94585715035713206237292522680087825151322918474327}{354444690504687344018851216356591317119754553065543} a - \frac{82243725531826559049476088499032862875809951788730}{354444690504687344018851216356591317119754553065543}$
Class group and class number
$C_{145669}$, which has order $145669$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.3102125697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.1369.1, 6.0.12854870299.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 37 | Data not computed | ||||||