Normalized defining polynomial
\( x^{18} - 9 x^{17} + 521 x^{16} - 2814 x^{15} + 101712 x^{14} - 273354 x^{13} + 9930737 x^{12} - 4915819 x^{11} + 542574306 x^{10} + 675680245 x^{9} + 17329976899 x^{8} + 41353096938 x^{7} + 318706023622 x^{6} + 865142724388 x^{5} + 3020376551570 x^{4} + 6566549151730 x^{3} + 12083146048786 x^{2} + 2900073393380 x + 24315241393928 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3965425743251446234740452651360873660809216=-\,2^{18}\cdot 13^{2}\cdot 193^{6}\cdot 229^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $232.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{17} - \frac{185350993250255256928566361137523999778171127240129129930067239409260046879211384591996236222396652085885705751}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{16} + \frac{10371898739928497766334803353554230619727223331774553763866773308936109883430662843311095248910770996588344847}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{15} + \frac{46201500550495364420164319940763313261406529360597291085903400021187095113716054646251370425221073398679224370}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659} a^{14} - \frac{303361426399434886458941961738494376278335146884966393094100429868303431532400177971635238214192090339633483865}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659} a^{13} + \frac{582794955448340183702109452994814778455404262669112378210351542905131412798867889847306111829317771195965621605}{1783205230841974388572308288864430448797366216688603192991853299998598653017800763312254117527326039569713815318} a^{12} + \frac{1492143606088478455240013997714613794986441560930702866101129365590437858481681557146411559964407290910350998277}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{11} + \frac{1226422157221620035417387903834468613783636218018105269007869749301945347361861431617889693853741452618009367543}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{10} - \frac{67829895359263725879931498060201379749027337789853362432317896524872752934998477259804357659017473388040212369}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659} a^{9} - \frac{667016220011471796005361923899547020633206351320675427696022762552081529804249807112844570370127899802609509591}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{8} + \frac{1333012280124408791750513692669190658666692763537269640774776057906831589221431922205888147716096637815384152825}{3566410461683948777144616577728860897594732433377206385983706599997197306035601526624508235054652079139427630636} a^{7} + \frac{238421609020270681727223404351079887251220139100947061587889505449964667742049687128800906240879916428414370488}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659} a^{6} - \frac{36081939933998955229900020117240388529397714734010295970011585318660782080416466782432378963152036961417428029}{77530662210520625590100360385410019512928965942982747521384926086895593609469598404880613805535914763900600666} a^{5} - \frac{375546361900580784627872162957508768417253915927886262093605411525986391482322540873843578596489328068948808652}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659} a^{4} + \frac{880354900188160100906861772532651246638035147274138101904863427810979022577994211987696737682455072250269917845}{1783205230841974388572308288864430448797366216688603192991853299998598653017800763312254117527326039569713815318} a^{3} + \frac{528754017203970511439040964587855164438427130231621167558022501433045990702333743814130623693707985272761025429}{1783205230841974388572308288864430448797366216688603192991853299998598653017800763312254117527326039569713815318} a^{2} - \frac{260656613370839316288984837931409071073231584444293090315306903146720000186930980728688398591806634010820096367}{1783205230841974388572308288864430448797366216688603192991853299998598653017800763312254117527326039569713815318} a + \frac{254594323326571806726694329371651053475849142190921176275028350253980327985725117584000315042060228063308822221}{891602615420987194286154144432215224398683108344301596495926649999299326508900381656127058763663019784856907659}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{2131164}$, which has order $204591744$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 708923.533235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n769 are not computed |
| Character table for t18n769 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 193 | Data not computed | ||||||
| 229 | Data not computed | ||||||