Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 210 x^{14} - 294 x^{13} + 396 x^{12} - 816 x^{11} + 1678 x^{10} - 2340 x^{9} + 2244 x^{8} - 1806 x^{7} + 4167 x^{6} - 9171 x^{5} + 11355 x^{4} - 8268 x^{3} + 3658 x^{2} - 936 x + 108 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39606063155139137133767897088=-\,2^{12}\cdot 3^{9}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{14} a^{12} + \frac{1}{14} a^{11} + \frac{3}{14} a^{10} - \frac{1}{7} a^{9} - \frac{3}{14} a^{8} - \frac{1}{2} a^{6} + \frac{3}{14} a^{5} + \frac{3}{14} a^{4} + \frac{1}{7} a^{3} + \frac{1}{14} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{14} a^{13} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{1}{14} a^{9} + \frac{3}{14} a^{8} - \frac{1}{2} a^{7} - \frac{2}{7} a^{6} + \frac{3}{7} a^{4} - \frac{1}{14} a^{3} - \frac{3}{14} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{168} a^{14} + \frac{5}{168} a^{13} - \frac{1}{84} a^{12} - \frac{41}{168} a^{11} + \frac{13}{56} a^{10} - \frac{11}{84} a^{9} + \frac{9}{56} a^{8} - \frac{27}{56} a^{7} - \frac{19}{42} a^{6} - \frac{41}{168} a^{5} - \frac{67}{168} a^{4} - \frac{2}{21} a^{3} - \frac{13}{28} a^{2} + \frac{5}{21} a - \frac{5}{14}$, $\frac{1}{168} a^{15} - \frac{1}{56} a^{13} + \frac{5}{168} a^{12} - \frac{1}{21} a^{11} + \frac{23}{168} a^{10} + \frac{41}{168} a^{9} - \frac{1}{24} a^{7} - \frac{3}{56} a^{6} + \frac{13}{28} a^{5} - \frac{17}{168} a^{4} + \frac{25}{84} a^{3} - \frac{13}{84} a^{2} - \frac{17}{42} a - \frac{1}{14}$, $\frac{1}{99421728} a^{16} - \frac{1}{12427716} a^{15} + \frac{19135}{12427716} a^{14} - \frac{12755}{1183592} a^{13} - \frac{175169}{49710864} a^{12} + \frac{4007531}{24855432} a^{11} - \frac{1038475}{7101552} a^{10} - \frac{60397}{16570288} a^{9} - \frac{9110525}{49710864} a^{8} - \frac{775471}{24855432} a^{7} + \frac{1955825}{7101552} a^{6} + \frac{2749015}{8285144} a^{5} + \frac{26581369}{99421728} a^{4} - \frac{24684571}{49710864} a^{3} + \frac{1043509}{7101552} a^{2} - \frac{2560713}{8285144} a - \frac{3520577}{8285144}$, $\frac{1}{22767575712} a^{17} + \frac{53}{11383787856} a^{16} + \frac{268623}{135521284} a^{15} - \frac{12475363}{5691893928} a^{14} + \frac{80584481}{3794595952} a^{13} + \frac{19815309}{948648988} a^{12} - \frac{2140118065}{11383787856} a^{11} - \frac{1238407073}{11383787856} a^{10} - \frac{846444779}{11383787856} a^{9} + \frac{91016957}{1422973482} a^{8} + \frac{862089}{3794595952} a^{7} - \frac{291489886}{711486741} a^{6} + \frac{430740651}{7589191904} a^{5} + \frac{252354217}{1897297976} a^{4} + \frac{638400499}{1626255408} a^{3} + \frac{317688842}{711486741} a^{2} + \frac{672736397}{1897297976} a + \frac{72145067}{948648988}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19092757}{203281926} a^{17} + \frac{324576869}{406563852} a^{16} - \frac{331895264}{101640963} a^{15} + \frac{866330135}{101640963} a^{14} - \frac{1576515436}{101640963} a^{13} + \frac{676919711}{33880321} a^{12} - \frac{2786618690}{101640963} a^{11} + \frac{4282069165}{67760642} a^{10} - \frac{12845807312}{101640963} a^{9} + \frac{16008645040}{101640963} a^{8} - \frac{13593525280}{101640963} a^{7} + \frac{10647508315}{101640963} a^{6} - \frac{69237356587}{203281926} a^{5} + \frac{93809561563}{135521284} a^{4} - \frac{73745502826}{101640963} a^{3} + \frac{14329182505}{33880321} a^{2} - \frac{14326293356}{101640963} a + \frac{755635754}{33880321} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 373923084.8527347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.33708.1, 3.1.8427.1 x3, 6.0.3408687792.2, 6.0.213042987.1, 9.3.114900048092736.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.6.4.1 | $x^{6} + 742 x^{3} + 351125$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 53.6.4.1 | $x^{6} + 742 x^{3} + 351125$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 53.6.4.1 | $x^{6} + 742 x^{3} + 351125$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |