Normalized defining polynomial
\( x^{18} - 4 x^{17} + 20 x^{16} - 50 x^{15} + 116 x^{14} - 195 x^{13} + 243 x^{12} - 234 x^{11} + 254 x^{10} + 378 x^{9} + 13 x^{8} + 1104 x^{7} - 155 x^{6} + 736 x^{5} + 470 x^{4} - 73 x^{3} + 561 x^{2} - 195 x + 169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3953515887295964352000000=-\,2^{12}\cdot 3^{9}\cdot 5^{6}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{3} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{1}{3} a^{10} - \frac{1}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{2} - \frac{1}{9} a$, $\frac{1}{351} a^{15} + \frac{4}{117} a^{14} + \frac{2}{39} a^{13} + \frac{1}{117} a^{12} - \frac{1}{27} a^{11} - \frac{10}{351} a^{10} + \frac{70}{351} a^{9} - \frac{8}{351} a^{8} + \frac{131}{351} a^{7} - \frac{121}{351} a^{6} + \frac{67}{351} a^{5} - \frac{116}{351} a^{4} + \frac{19}{351} a^{3} - \frac{103}{351} a^{2} + \frac{76}{351} a - \frac{2}{27}$, $\frac{1}{351} a^{16} - \frac{1}{39} a^{14} - \frac{2}{39} a^{13} - \frac{49}{351} a^{12} - \frac{127}{351} a^{11} - \frac{44}{351} a^{10} - \frac{29}{351} a^{9} - \frac{85}{351} a^{8} - \frac{94}{351} a^{7} - \frac{2}{351} a^{6} + \frac{16}{351} a^{5} - \frac{71}{351} a^{4} + \frac{98}{351} a^{3} - \frac{92}{351} a^{2} + \frac{154}{351} a$, $\frac{1}{65786034482454482235} a^{17} - \frac{1082102185838425}{4385735632163632149} a^{16} + \frac{180637006448038}{1012092838191607419} a^{15} + \frac{19310824521869453}{4385735632163632149} a^{14} + \frac{1789000199280164171}{65786034482454482235} a^{13} + \frac{9731161743394789844}{65786034482454482235} a^{12} - \frac{20777076701764291486}{65786034482454482235} a^{11} - \frac{19305450653936274538}{65786034482454482235} a^{10} - \frac{68760625548648716}{5060464190958037095} a^{9} - \frac{29766792291156504674}{65786034482454482235} a^{8} - \frac{14586341020625731648}{65786034482454482235} a^{7} + \frac{27614559516224278037}{65786034482454482235} a^{6} + \frac{498598246281285886}{21928678160818160745} a^{5} - \frac{29503510090710534692}{65786034482454482235} a^{4} + \frac{478135927338074021}{2436519795646462305} a^{3} + \frac{3350342790337724959}{13157206896490896447} a^{2} + \frac{1682589663816585092}{5060464190958037095} a - \frac{97079316219041239}{389266476227541315}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{154267751312}{23262544720935} a^{17} + \frac{917436041}{57438382027} a^{16} - \frac{33127787051}{357885303399} a^{15} + \frac{203054590415}{1550836314729} a^{14} - \frac{6753985485622}{23262544720935} a^{13} + \frac{4847567351357}{23262544720935} a^{12} + \frac{3123406107062}{23262544720935} a^{11} - \frac{10358175069589}{23262544720935} a^{10} + \frac{156706696342}{1789426516995} a^{9} - \frac{106270745838347}{23262544720935} a^{8} - \frac{105958541497684}{23262544720935} a^{7} - \frac{196630797503584}{23262544720935} a^{6} - \frac{71725541767937}{7754181573645} a^{5} - \frac{117431755163666}{23262544720935} a^{4} - \frac{55883691195643}{7754181573645} a^{3} - \frac{16459544775923}{4652508944187} a^{2} - \frac{3262946753134}{1789426516995} a - \frac{159045634627}{137648193615} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 966489.2545981706 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1452.1 x3, 3.1.1815.1, 6.0.9882675.1, 6.0.6324912.1, 9.1.1147971528000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |