Normalized defining polynomial
\( x^{18} + 6 x^{16} - 6 x^{15} + 36 x^{14} - 12 x^{13} - 33 x^{12} + 90 x^{11} - 138 x^{10} + 16 x^{9} + 54 x^{8} - 150 x^{7} + 339 x^{6} - 306 x^{5} + 192 x^{4} - 66 x^{3} + 18 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39531097362172608000000=-\,2^{12}\cdot 3^{31}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{18} a^{9} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a - \frac{1}{18}$, $\frac{1}{18} a^{10} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{18} a$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{18} a^{2} - \frac{1}{3}$, $\frac{1}{18} a^{12} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{5}{12} a^{8} + \frac{5}{12} a^{7} + \frac{1}{4} a^{6} - \frac{5}{12} a^{5} - \frac{1}{36} a^{4} + \frac{1}{4} a^{3} + \frac{1}{36} a^{2} + \frac{1}{9} a - \frac{11}{36}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{12} - \frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{36} a^{9} + \frac{5}{12} a^{8} - \frac{1}{12} a^{7} + \frac{5}{12} a^{6} - \frac{1}{36} a^{5} - \frac{1}{12} a^{4} - \frac{5}{36} a^{3} + \frac{1}{9} a^{2} + \frac{13}{36} a - \frac{7}{18}$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{12} + \frac{1}{18} a^{6} + \frac{7}{36} a^{3} - \frac{1}{4}$, $\frac{1}{8244} a^{16} - \frac{26}{2061} a^{15} + \frac{1}{1374} a^{14} + \frac{73}{8244} a^{13} - \frac{22}{2061} a^{12} + \frac{1}{2061} a^{11} - \frac{34}{2061} a^{10} - \frac{44}{2061} a^{9} + \frac{56}{229} a^{8} + \frac{829}{4122} a^{7} - \frac{763}{2061} a^{6} - \frac{197}{687} a^{5} - \frac{1501}{8244} a^{4} + \frac{1000}{2061} a^{3} - \frac{1301}{4122} a^{2} + \frac{2437}{8244} a - \frac{943}{2061}$, $\frac{1}{22283532} a^{17} - \frac{1199}{22283532} a^{16} + \frac{6563}{11141766} a^{15} - \frac{27637}{11141766} a^{14} + \frac{160885}{22283532} a^{13} - \frac{393467}{22283532} a^{12} - \frac{201227}{22283532} a^{11} + \frac{358279}{22283532} a^{10} + \frac{605791}{22283532} a^{9} - \frac{5204617}{22283532} a^{8} + \frac{7482731}{22283532} a^{7} - \frac{6122017}{22283532} a^{6} + \frac{644537}{5570883} a^{5} - \frac{567706}{5570883} a^{4} - \frac{40723}{97308} a^{3} - \frac{46709}{1310796} a^{2} - \frac{1510985}{11141766} a + \frac{676490}{5570883}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6542}{8109} a^{17} + \frac{811}{3604} a^{16} + \frac{159623}{32436} a^{15} - \frac{18703}{5406} a^{14} + \frac{152411}{5406} a^{13} - \frac{60649}{32436} a^{12} - \frac{859697}{32436} a^{11} + \frac{705841}{10812} a^{10} - \frac{3034741}{32436} a^{9} - \frac{381203}{32436} a^{8} + \frac{138133}{3604} a^{7} - \frac{3588653}{32436} a^{6} + \frac{2628743}{10812} a^{5} - \frac{490231}{2703} a^{4} + \frac{1774793}{16218} a^{3} - \frac{50285}{1908} a^{2} + \frac{110615}{10812} a - \frac{18893}{8109} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49776.35407190846 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1620.1, 3.1.108.1 x3, 6.0.7873200.1, 6.0.34992.1, 9.3.114791256000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |