Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 33 x^{15} + 48 x^{14} - 72 x^{13} + 132 x^{12} - 99 x^{11} - 171 x^{10} + 495 x^{9} - 486 x^{8} + 63 x^{7} + 444 x^{6} - 675 x^{5} + 567 x^{4} - 315 x^{3} + 117 x^{2} - 27 x + 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39531097362172608000000=-\,2^{12}\cdot 3^{31}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} - \frac{6}{13} a^{15} + \frac{5}{13} a^{14} - \frac{2}{13} a^{13} - \frac{6}{13} a^{12} - \frac{4}{13} a^{11} - \frac{5}{13} a^{10} + \frac{3}{13} a^{9} - \frac{3}{13} a^{8} + \frac{5}{13} a^{6} - \frac{4}{13} a^{5} + \frac{6}{13} a^{4} + \frac{5}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a - \frac{3}{13}$, $\frac{1}{2295696845} a^{17} + \frac{9464172}{459139369} a^{16} - \frac{92054018}{2295696845} a^{15} + \frac{6222553}{2295696845} a^{14} - \frac{977800638}{2295696845} a^{13} - \frac{72635317}{176592065} a^{12} - \frac{72366916}{2295696845} a^{11} + \frac{813252598}{2295696845} a^{10} - \frac{571841262}{2295696845} a^{9} - \frac{509717011}{2295696845} a^{8} - \frac{299608889}{2295696845} a^{7} - \frac{388781214}{2295696845} a^{6} - \frac{44268476}{176592065} a^{5} + \frac{1135356}{2295696845} a^{4} - \frac{2577396}{35318413} a^{3} + \frac{174990116}{459139369} a^{2} + \frac{509494997}{2295696845} a - \frac{485706986}{2295696845}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7705865226}{13584005} a^{17} - \frac{3594133491}{2716801} a^{16} + \frac{80462613842}{13584005} a^{15} - \frac{200545730832}{13584005} a^{14} + \frac{235892729622}{13584005} a^{13} - \frac{397196252901}{13584005} a^{12} + \frac{751850308854}{13584005} a^{11} - \frac{260551546092}{13584005} a^{10} - \frac{1491962555632}{13584005} a^{9} + \frac{2817625117614}{13584005} a^{8} - \frac{1862305106334}{13584005} a^{7} - \frac{758996697084}{13584005} a^{6} + \frac{2914233331782}{13584005} a^{5} - \frac{3254187818214}{13584005} a^{4} + \frac{438975228936}{2716801} a^{3} - \frac{192184283232}{2716801} a^{2} + \frac{259694452782}{13584005} a - \frac{34628641556}{13584005} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28271.4308598 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^3:C_2^2$ (as 18T53):
| A solvable group of order 108 |
| The 15 conjugacy class representatives for $C_3^3:C_2^2$ |
| Character table for $C_3^3:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.7873200.2, 6.0.34992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |