Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 132 x^{15} + 321 x^{14} - 651 x^{13} + 736 x^{12} + 693 x^{11} - 4680 x^{10} + 9969 x^{9} - 3273 x^{8} - 27555 x^{7} + 64117 x^{6} - 73656 x^{5} - 33918 x^{4} + 148365 x^{3} - 131238 x^{2} + 50868 x + 391959 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3952298647444414435530183927=-\,3^{9}\cdot 7^{12}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{45} a^{11} + \frac{2}{45} a^{10} - \frac{2}{45} a^{9} - \frac{2}{15} a^{8} + \frac{2}{15} a^{7} + \frac{2}{15} a^{6} - \frac{4}{45} a^{5} + \frac{1}{45} a^{4} + \frac{1}{9} a^{3} - \frac{7}{15} a^{2} + \frac{1}{15} a - \frac{2}{5}$, $\frac{1}{45} a^{12} - \frac{1}{45} a^{10} - \frac{2}{45} a^{9} + \frac{1}{15} a^{8} - \frac{2}{15} a^{7} - \frac{1}{45} a^{6} + \frac{1}{5} a^{5} - \frac{17}{45} a^{4} + \frac{14}{45} a^{3} + \frac{1}{3} a^{2} + \frac{7}{15} a - \frac{1}{5}$, $\frac{1}{45} a^{13} + \frac{1}{45} a^{9} + \frac{1}{15} a^{8} + \frac{1}{9} a^{7} - \frac{7}{15} a^{5} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{2}{15} a - \frac{2}{5}$, $\frac{1}{135} a^{14} - \frac{1}{135} a^{13} - \frac{1}{135} a^{12} + \frac{1}{135} a^{11} - \frac{2}{45} a^{10} - \frac{1}{45} a^{9} - \frac{7}{135} a^{8} + \frac{7}{135} a^{7} - \frac{14}{135} a^{6} - \frac{67}{135} a^{5} + \frac{7}{15} a^{4} - \frac{2}{5} a^{3} + \frac{2}{15} a^{2} - \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{135} a^{15} + \frac{1}{135} a^{13} + \frac{1}{135} a^{11} + \frac{1}{45} a^{10} - \frac{4}{135} a^{9} + \frac{2}{15} a^{8} - \frac{1}{135} a^{7} - \frac{46}{135} a^{5} + \frac{4}{9} a^{4} - \frac{2}{45} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{9923641941752325} a^{16} - \frac{8}{9923641941752325} a^{15} - \frac{360405774669}{122514098046325} a^{14} - \frac{16175302245922}{9923641941752325} a^{13} - \frac{36382407332029}{9923641941752325} a^{12} - \frac{154041725654}{122514098046325} a^{11} + \frac{220453484150144}{9923641941752325} a^{10} + \frac{96766366909754}{9923641941752325} a^{9} - \frac{1681753406686}{3307880647250775} a^{8} - \frac{1107914960723636}{9923641941752325} a^{7} + \frac{195341221014929}{1984728388350465} a^{6} + \frac{1000862421457696}{3307880647250775} a^{5} + \frac{154609033904312}{661576129450155} a^{4} - \frac{48285463944887}{220525376483385} a^{3} + \frac{7673097127}{13957302309075} a^{2} + \frac{26977278931076}{367542294138975} a + \frac{56287281189473}{122514098046325}$, $\frac{1}{22953383811273127725} a^{17} + \frac{1148}{22953383811273127725} a^{16} + \frac{62158963300557133}{22953383811273127725} a^{15} + \frac{10121419501041209}{22953383811273127725} a^{14} + \frac{61536205236334279}{22953383811273127725} a^{13} - \frac{251569647914819248}{22953383811273127725} a^{12} + \frac{298458994871797}{58109832433602855} a^{11} - \frac{1099305342939991067}{22953383811273127725} a^{10} + \frac{462933274249004486}{22953383811273127725} a^{9} - \frac{1848327129411375434}{22953383811273127725} a^{8} + \frac{173489242534058579}{22953383811273127725} a^{7} - \frac{2481674499702567287}{22953383811273127725} a^{6} + \frac{2753124086314253021}{7651127937091042575} a^{5} + \frac{508665570321880679}{1530225587418208515} a^{4} + \frac{816137655468153143}{2550375979030347525} a^{3} - \frac{210114098618124479}{2550375979030347525} a^{2} - \frac{844650686692226}{11335004351245989} a - \frac{37174574622980689}{94458369593716575}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11080835.8701 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.1.87.1 x3, 6.0.658503.1, 9.1.6740083091889.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.9.6.3 | $x^{9} - 14 x^{6} + 49 x^{3} - 1372$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 7.9.6.3 | $x^{9} - 14 x^{6} + 49 x^{3} - 1372$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |