Normalized defining polynomial
\( x^{18} - 3 x^{17} - 6 x^{16} + 41 x^{15} + 9 x^{14} - 369 x^{13} + 780 x^{12} + 270 x^{11} - 3168 x^{10} + 2630 x^{9} + 10344 x^{8} - 33267 x^{7} + 46231 x^{6} - 34002 x^{5} + 13104 x^{4} - 3000 x^{3} + 2160 x^{2} - 1728 x + 576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38778658112119365306896643=-\,3^{33}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{36} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{936} a^{15} + \frac{1}{104} a^{14} - \frac{1}{12} a^{13} - \frac{25}{312} a^{12} + \frac{1}{104} a^{11} - \frac{7}{312} a^{10} - \frac{1}{78} a^{9} - \frac{19}{52} a^{8} + \frac{23}{78} a^{7} - \frac{155}{468} a^{6} + \frac{6}{13} a^{5} - \frac{125}{312} a^{4} - \frac{29}{104} a^{3} - \frac{21}{52} a^{2} - \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{1872} a^{16} - \frac{1}{1872} a^{15} - \frac{1}{156} a^{14} - \frac{25}{624} a^{13} - \frac{7}{624} a^{12} - \frac{37}{624} a^{11} + \frac{7}{312} a^{10} - \frac{11}{312} a^{9} - \frac{43}{156} a^{8} + \frac{259}{936} a^{7} + \frac{103}{468} a^{6} - \frac{19}{208} a^{5} - \frac{63}{208} a^{4} + \frac{23}{52} a^{3} - \frac{9}{52} a^{2} - \frac{1}{2} a + \frac{3}{13}$, $\frac{1}{7475463300219892224807456} a^{17} + \frac{293615788987124145917}{7475463300219892224807456} a^{16} + \frac{15556445918491022959}{95839273079742208010352} a^{15} - \frac{7391803494825531249053}{2491821100073297408269152} a^{14} - \frac{176612997811497117726149}{2491821100073297408269152} a^{13} + \frac{9810388505697471336383}{830607033357765802756384} a^{12} - \frac{23915711017865234154995}{622955275018324352067288} a^{11} - \frac{28712098392553175481097}{415303516678882901378192} a^{10} - \frac{36850477149086598589249}{311477637509162176033644} a^{9} + \frac{335120742344868644513467}{3737731650109946112403728} a^{8} + \frac{194333721577445602623041}{934432912527486528100932} a^{7} + \frac{507797713627642918472975}{2491821100073297408269152} a^{6} + \frac{25785155019172898879039}{830607033357765802756384} a^{5} - \frac{45482428373223139850411}{95839273079742208010352} a^{4} + \frac{18522002520679602847027}{155738818754581088016822} a^{3} - \frac{7758909791644102137429}{25956469792430181336137} a^{2} + \frac{355669480249215988288}{25956469792430181336137} a + \frac{4880887101954782676866}{25956469792430181336137}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8641960747811}{5681155212053256} a^{17} + \frac{14084439966657}{3787436808035504} a^{16} + \frac{126245783610055}{11362310424106512} a^{15} - \frac{319163787240127}{5681155212053256} a^{14} - \frac{165822075190931}{3787436808035504} a^{13} + \frac{6083601799943125}{11362310424106512} a^{12} - \frac{3405238504289649}{3787436808035504} a^{11} - \frac{1680198942109893}{1893718404017752} a^{10} + \frac{8239144065445373}{1893718404017752} a^{9} - \frac{1235679016409417}{710144401506657} a^{8} - \frac{31460327080354911}{1893718404017752} a^{7} + \frac{18287582890119199}{437011939388712} a^{6} - \frac{546452586169214965}{11362310424106512} a^{5} + \frac{94645620481335155}{3787436808035504} a^{4} - \frac{5033820508526183}{1420288803013314} a^{3} - \frac{1321759593072769}{946859202008876} a^{2} - \frac{966297020073063}{473429601004438} a + \frac{439584875409588}{236714800502219} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1172990.2101607663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.1198435061547.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |