Normalized defining polynomial
\( x^{18} - 3 x^{17} + x^{16} + 9 x^{15} - 22 x^{14} - 20 x^{13} + 45 x^{12} + 16 x^{11} + 73 x^{10} + 70 x^{9} + 20 x^{8} + 50 x^{7} + 25 x^{6} + 23 x^{5} + 122 x^{4} + 138 x^{3} + 68 x^{2} + 14 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-387675611964622937567232=-\,2^{12}\cdot 3^{9}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} + \frac{8}{23} a^{15} + \frac{6}{23} a^{14} + \frac{9}{23} a^{13} - \frac{7}{23} a^{12} + \frac{7}{23} a^{11} - \frac{10}{23} a^{10} - \frac{8}{23} a^{9} + \frac{10}{23} a^{8} - \frac{7}{23} a^{7} + \frac{10}{23} a^{6} + \frac{5}{23} a^{5} + \frac{9}{23} a^{4} + \frac{6}{23} a^{3} - \frac{7}{23} a^{2} + \frac{5}{23}$, $\frac{1}{32307669657005069} a^{17} + \frac{453628973118091}{32307669657005069} a^{16} - \frac{2943065257200439}{32307669657005069} a^{15} - \frac{10077723684170126}{32307669657005069} a^{14} + \frac{341411235899876}{873180261000137} a^{13} + \frac{10695944235253026}{32307669657005069} a^{12} - \frac{3307354099349614}{32307669657005069} a^{11} - \frac{13505970217644552}{32307669657005069} a^{10} + \frac{9947543725003264}{32307669657005069} a^{9} - \frac{2022583162551315}{32307669657005069} a^{8} - \frac{11028542953585107}{32307669657005069} a^{7} - \frac{10078707982926039}{32307669657005069} a^{6} + \frac{9465309981508714}{32307669657005069} a^{5} - \frac{8568955508001219}{32307669657005069} a^{4} + \frac{8524423383622956}{32307669657005069} a^{3} - \frac{440321064706771}{1404681289435003} a^{2} - \frac{5485114337929051}{32307669657005069} a - \frac{587705323431761}{1404681289435003}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{16188770160}{3354914573} a^{17} + \frac{51329565404}{3354914573} a^{16} - \frac{24864629234}{3354914573} a^{15} - \frac{141731219309}{3354914573} a^{14} + \frac{380457598637}{3354914573} a^{13} + \frac{259733715114}{3354914573} a^{12} - \frac{775136334131}{3354914573} a^{11} - \frac{128024004474}{3354914573} a^{10} - \frac{1154654195510}{3354914573} a^{9} - \frac{936593679275}{3354914573} a^{8} - \frac{159036722350}{3354914573} a^{7} - \frac{775257469923}{3354914573} a^{6} - \frac{276265967810}{3354914573} a^{5} - \frac{320016893584}{3354914573} a^{4} - \frac{1921128564992}{3354914573} a^{3} - \frac{1906156733363}{3354914573} a^{2} - \frac{764553498117}{3354914573} a - \frac{86694574527}{3354914573} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65819.9777767664 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.148.1, 6.0.591408.1, 6.0.36963.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |