Normalized defining polynomial
\( x^{18} - 9 x^{17} + 48 x^{16} - 162 x^{15} + 378 x^{14} - 432 x^{13} + 1656 x^{12} - 12114 x^{11} + 50337 x^{10} - 114453 x^{9} + 189630 x^{8} - 187128 x^{7} + 228612 x^{6} - 220644 x^{5} + 641376 x^{4} + 160920 x^{3} + 645660 x^{2} + 217134 x + 252318 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3863416294113743236181988409344=-\,2^{16}\cdot 3^{33}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{1}{32} a^{13} - \frac{1}{8} a^{12} + \frac{3}{32} a^{11} - \frac{7}{16} a^{10} - \frac{15}{32} a^{9} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} + \frac{3}{16} a^{6} + \frac{3}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{7}{16} a^{2} - \frac{3}{8} a - \frac{1}{16}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} + \frac{3}{32} a^{12} + \frac{1}{4} a^{11} - \frac{7}{32} a^{10} - \frac{3}{16} a^{9} - \frac{1}{4} a^{8} + \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{5}{16} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{16} a + \frac{1}{8}$, $\frac{1}{1002885234048081538115430999046558526873319205587392} a^{17} - \frac{876547103248508644549071004215328264011843785035}{250721308512020384528857749761639631718329801396848} a^{16} - \frac{1142977613507586239297458011959959844150121963713}{501442617024040769057715499523279263436659602793696} a^{15} - \frac{1176777993094620303872081189297317565682998432749}{31340163564002548066107218720204953964791225174606} a^{14} - \frac{7345477734502223681087537088551325324387714417505}{125360654256010192264428874880819815859164900698424} a^{13} - \frac{5254261580495928946211430298203524969099361565221}{125360654256010192264428874880819815859164900698424} a^{12} + \frac{52078686512128970413804105951226856891372427585487}{501442617024040769057715499523279263436659602793696} a^{11} + \frac{4908253192935377446390278383615133779847050685619}{125360654256010192264428874880819815859164900698424} a^{10} - \frac{217696738505316134299584498689869386041625143627861}{1002885234048081538115430999046558526873319205587392} a^{9} + \frac{156328991548210336930393086920605618633805879647205}{501442617024040769057715499523279263436659602793696} a^{8} - \frac{8338738971906558899348294447983881359419809220939}{31340163564002548066107218720204953964791225174606} a^{7} + \frac{38223795926501713609004266806493567615190532182185}{250721308512020384528857749761639631718329801396848} a^{6} + \frac{24059227091605133271767392608506407448890202848507}{62680327128005096132214437440409907929582450349212} a^{5} - \frac{5239749916258526477680490291890523867696691738395}{15670081782001274033053609360102476982395612587303} a^{4} + \frac{22730584179151282580036768268572871965446115715449}{62680327128005096132214437440409907929582450349212} a^{3} - \frac{115259119538127617723256551527165699032574741565793}{250721308512020384528857749761639631718329801396848} a^{2} + \frac{21867943656303451167411319878184812476167962156809}{62680327128005096132214437440409907929582450349212} a + \frac{77726108843346094196788986406314242632692622793101}{501442617024040769057715499523279263436659602793696}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44536004.20913794 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.108.1, 6.0.76877424.1, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||