Normalized defining polynomial
\( x^{18} - 21 x^{15} + 195 x^{12} - 340 x^{9} + 3120 x^{6} - 5376 x^{3} + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38604587267746687500000000=-\,2^{8}\cdot 3^{31}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{5} + \frac{1}{6} a^{2}$, $\frac{1}{60} a^{9} + \frac{7}{60} a^{6} + \frac{23}{60} a^{3} - \frac{4}{15}$, $\frac{1}{180} a^{10} + \frac{1}{180} a^{9} + \frac{3}{20} a^{7} + \frac{3}{20} a^{6} + \frac{7}{20} a^{4} + \frac{7}{20} a^{3} + \frac{16}{45} a + \frac{16}{45}$, $\frac{1}{360} a^{11} + \frac{1}{180} a^{9} + \frac{3}{40} a^{8} + \frac{3}{20} a^{6} - \frac{13}{40} a^{5} + \frac{7}{20} a^{3} - \frac{29}{90} a^{2} + \frac{16}{45}$, $\frac{1}{720} a^{12} - \frac{1}{144} a^{9} + \frac{11}{80} a^{6} + \frac{7}{180} a^{3} + \frac{7}{45}$, $\frac{1}{4320} a^{13} - \frac{1}{2160} a^{12} - \frac{1}{864} a^{10} - \frac{7}{2160} a^{9} - \frac{47}{1440} a^{7} - \frac{61}{720} a^{6} + \frac{1}{3} a^{5} - \frac{473}{1080} a^{4} + \frac{26}{135} a^{3} + \frac{1}{3} a^{2} + \frac{127}{270} a + \frac{10}{27}$, $\frac{1}{8640} a^{14} - \frac{1}{2160} a^{12} - \frac{1}{1728} a^{11} + \frac{17}{2160} a^{9} - \frac{47}{2880} a^{8} - \frac{17}{144} a^{6} + \frac{247}{2160} a^{5} + \frac{1}{3} a^{4} - \frac{119}{270} a^{3} - \frac{233}{540} a^{2} + \frac{1}{3} a + \frac{11}{135}$, $\frac{1}{449280} a^{15} - \frac{277}{449280} a^{12} + \frac{1219}{449280} a^{9} - \frac{2641}{22464} a^{6} - \frac{10189}{28080} a^{3} - \frac{719}{1755}$, $\frac{1}{898560} a^{16} - \frac{23}{299520} a^{13} - \frac{1}{2160} a^{12} + \frac{179}{898560} a^{10} - \frac{7}{2160} a^{9} + \frac{16903}{224640} a^{7} - \frac{61}{720} a^{6} + \frac{1}{3} a^{5} - \frac{119}{416} a^{4} + \frac{26}{135} a^{3} + \frac{1}{3} a^{2} - \frac{119}{1755} a + \frac{10}{27}$, $\frac{1}{1797120} a^{17} - \frac{23}{599040} a^{14} - \frac{1}{2160} a^{12} + \frac{179}{1797120} a^{11} + \frac{17}{2160} a^{9} + \frac{16903}{449280} a^{8} - \frac{17}{144} a^{6} - \frac{773}{2496} a^{5} + \frac{1}{3} a^{4} - \frac{119}{270} a^{3} - \frac{352}{1755} a^{2} + \frac{1}{3} a + \frac{11}{135}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17}{49920} a^{15} - \frac{341}{49920} a^{12} + \frac{3043}{49920} a^{9} - \frac{937}{12480} a^{6} + \frac{3691}{3120} a^{3} - \frac{107}{195} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 528671.2860542445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.675.1 x3, 6.0.1366875.1, 9.3.3587226750000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |