Normalized defining polynomial
\( x^{18} - 4 x^{17} + 16 x^{16} - 22 x^{15} + 43 x^{14} - 16 x^{13} + 254 x^{12} - 1038 x^{11} + 4438 x^{10} - 14158 x^{9} + 33530 x^{8} - 63172 x^{7} + 96066 x^{6} - 118196 x^{5} + 113867 x^{4} - 81796 x^{3} + 41236 x^{2} - 13182 x + 2197 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38477475727151575852122112=-\,2^{18}\cdot 7^{12}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{3}{13} a^{11} + \frac{2}{13} a^{10} + \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{6}{13} a^{7} - \frac{5}{13} a^{6} - \frac{5}{13} a^{5} + \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{26} a^{13} - \frac{1}{26} a^{12} + \frac{3}{26} a^{11} + \frac{9}{26} a^{10} + \frac{11}{26} a^{9} + \frac{3}{26} a^{8} - \frac{7}{26} a^{7} - \frac{11}{26} a^{6} + \frac{9}{26} a^{5} + \frac{11}{26} a^{4} + \frac{3}{26} a^{3} + \frac{9}{26} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{52} a^{14} - \frac{1}{26} a^{12} - \frac{1}{2} a^{11} - \frac{7}{26} a^{10} + \frac{6}{13} a^{9} - \frac{2}{13} a^{8} - \frac{5}{13} a^{7} - \frac{2}{13} a^{6} + \frac{7}{26} a^{5} + \frac{3}{26} a^{4} - \frac{3}{13} a^{3} + \frac{9}{26} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{104} a^{15} - \frac{1}{104} a^{14} - \frac{1}{52} a^{13} - \frac{5}{26} a^{11} + \frac{17}{52} a^{10} - \frac{5}{13} a^{9} - \frac{5}{13} a^{8} + \frac{3}{13} a^{7} - \frac{23}{52} a^{6} - \frac{3}{13} a^{5} + \frac{15}{52} a^{4} - \frac{17}{52} a^{3} - \frac{5}{26} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{1024816} a^{16} + \frac{201}{128102} a^{15} - \frac{1219}{1024816} a^{14} - \frac{7681}{512408} a^{13} + \frac{4551}{256204} a^{12} + \frac{36483}{512408} a^{11} - \frac{67447}{512408} a^{10} - \frac{29487}{128102} a^{9} + \frac{10679}{64051} a^{8} - \frac{174155}{512408} a^{7} - \frac{99351}{512408} a^{6} + \frac{65667}{512408} a^{5} - \frac{95915}{256204} a^{4} + \frac{4393}{39416} a^{3} - \frac{28845}{78832} a^{2} - \frac{1119}{3032} a + \frac{815}{6064}$, $\frac{1}{9747391831660495461798752} a^{17} + \frac{1221794478731210899}{9747391831660495461798752} a^{16} - \frac{3631681346468108093387}{9747391831660495461798752} a^{15} - \frac{32518814475531479542355}{9747391831660495461798752} a^{14} - \frac{199464490972374864425}{374899685833095979299952} a^{13} - \frac{152429446509733754616811}{4873695915830247730899376} a^{12} + \frac{720530677054421514183457}{2436847957915123865449688} a^{11} - \frac{2039083864271852504247657}{4873695915830247730899376} a^{10} - \frac{560928968903383880230793}{1218423978957561932724844} a^{9} - \frac{1599882404699414371021411}{4873695915830247730899376} a^{8} - \frac{114965188992394276239811}{609211989478780966362422} a^{7} + \frac{1190158601523608909815387}{2436847957915123865449688} a^{6} - \frac{712350588038654686487125}{4873695915830247730899376} a^{5} + \frac{2259296842176507160182131}{4873695915830247730899376} a^{4} - \frac{316099244911798989307639}{749799371666191958599904} a^{3} - \frac{242268813716812366925029}{749799371666191958599904} a^{2} + \frac{4445187778324608243525}{57676874743553227584608} a + \frac{20423728472749678183013}{57676874743553227584608}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39919.4689246 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.1.2548.1 x3, \(\Q(\zeta_{7})^+\), 6.0.337599808.2, 6.0.6889792.1 x2, 6.0.337599808.1, 9.3.16542390592.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.6889792.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |