Properties

Label 18.0.38477475727...2112.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 7^{12}\cdot 13^{9}$
Root discriminant $26.39$
Ramified primes $2, 7, 13$
Class number $8$
Class group $[2, 2, 2]$
Galois group $S_3 \times C_3$ (as 18T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2197, -13182, 41236, -81796, 113867, -118196, 96066, -63172, 33530, -14158, 4438, -1038, 254, -16, 43, -22, 16, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 4*x^17 + 16*x^16 - 22*x^15 + 43*x^14 - 16*x^13 + 254*x^12 - 1038*x^11 + 4438*x^10 - 14158*x^9 + 33530*x^8 - 63172*x^7 + 96066*x^6 - 118196*x^5 + 113867*x^4 - 81796*x^3 + 41236*x^2 - 13182*x + 2197)
 
gp: K = bnfinit(x^18 - 4*x^17 + 16*x^16 - 22*x^15 + 43*x^14 - 16*x^13 + 254*x^12 - 1038*x^11 + 4438*x^10 - 14158*x^9 + 33530*x^8 - 63172*x^7 + 96066*x^6 - 118196*x^5 + 113867*x^4 - 81796*x^3 + 41236*x^2 - 13182*x + 2197, 1)
 

Normalized defining polynomial

\( x^{18} - 4 x^{17} + 16 x^{16} - 22 x^{15} + 43 x^{14} - 16 x^{13} + 254 x^{12} - 1038 x^{11} + 4438 x^{10} - 14158 x^{9} + 33530 x^{8} - 63172 x^{7} + 96066 x^{6} - 118196 x^{5} + 113867 x^{4} - 81796 x^{3} + 41236 x^{2} - 13182 x + 2197 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-38477475727151575852122112=-\,2^{18}\cdot 7^{12}\cdot 13^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{3}{13} a^{11} + \frac{2}{13} a^{10} + \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{6}{13} a^{7} - \frac{5}{13} a^{6} - \frac{5}{13} a^{5} + \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{26} a^{13} - \frac{1}{26} a^{12} + \frac{3}{26} a^{11} + \frac{9}{26} a^{10} + \frac{11}{26} a^{9} + \frac{3}{26} a^{8} - \frac{7}{26} a^{7} - \frac{11}{26} a^{6} + \frac{9}{26} a^{5} + \frac{11}{26} a^{4} + \frac{3}{26} a^{3} + \frac{9}{26} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{52} a^{14} - \frac{1}{26} a^{12} - \frac{1}{2} a^{11} - \frac{7}{26} a^{10} + \frac{6}{13} a^{9} - \frac{2}{13} a^{8} - \frac{5}{13} a^{7} - \frac{2}{13} a^{6} + \frac{7}{26} a^{5} + \frac{3}{26} a^{4} - \frac{3}{13} a^{3} + \frac{9}{26} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{104} a^{15} - \frac{1}{104} a^{14} - \frac{1}{52} a^{13} - \frac{5}{26} a^{11} + \frac{17}{52} a^{10} - \frac{5}{13} a^{9} - \frac{5}{13} a^{8} + \frac{3}{13} a^{7} - \frac{23}{52} a^{6} - \frac{3}{13} a^{5} + \frac{15}{52} a^{4} - \frac{17}{52} a^{3} - \frac{5}{26} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{1024816} a^{16} + \frac{201}{128102} a^{15} - \frac{1219}{1024816} a^{14} - \frac{7681}{512408} a^{13} + \frac{4551}{256204} a^{12} + \frac{36483}{512408} a^{11} - \frac{67447}{512408} a^{10} - \frac{29487}{128102} a^{9} + \frac{10679}{64051} a^{8} - \frac{174155}{512408} a^{7} - \frac{99351}{512408} a^{6} + \frac{65667}{512408} a^{5} - \frac{95915}{256204} a^{4} + \frac{4393}{39416} a^{3} - \frac{28845}{78832} a^{2} - \frac{1119}{3032} a + \frac{815}{6064}$, $\frac{1}{9747391831660495461798752} a^{17} + \frac{1221794478731210899}{9747391831660495461798752} a^{16} - \frac{3631681346468108093387}{9747391831660495461798752} a^{15} - \frac{32518814475531479542355}{9747391831660495461798752} a^{14} - \frac{199464490972374864425}{374899685833095979299952} a^{13} - \frac{152429446509733754616811}{4873695915830247730899376} a^{12} + \frac{720530677054421514183457}{2436847957915123865449688} a^{11} - \frac{2039083864271852504247657}{4873695915830247730899376} a^{10} - \frac{560928968903383880230793}{1218423978957561932724844} a^{9} - \frac{1599882404699414371021411}{4873695915830247730899376} a^{8} - \frac{114965188992394276239811}{609211989478780966362422} a^{7} + \frac{1190158601523608909815387}{2436847957915123865449688} a^{6} - \frac{712350588038654686487125}{4873695915830247730899376} a^{5} + \frac{2259296842176507160182131}{4873695915830247730899376} a^{4} - \frac{316099244911798989307639}{749799371666191958599904} a^{3} - \frac{242268813716812366925029}{749799371666191958599904} a^{2} + \frac{4445187778324608243525}{57676874743553227584608} a + \frac{20423728472749678183013}{57676874743553227584608}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 39919.4689246 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 18T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3 \times C_3$
Character table for $S_3 \times C_3$

Intermediate fields

\(\Q(\sqrt{-13}) \), 3.1.2548.1 x3, \(\Q(\zeta_{7})^+\), 6.0.337599808.2, 6.0.6889792.1 x2, 6.0.337599808.1, 9.3.16542390592.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 sibling: 6.0.6889792.1
Degree 9 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2_13.2t1.1c1$1$ $ 2^{2} \cdot 13 $ $x^{2} + 13$ $C_2$ (as 2T1) $1$ $-1$
* 1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
* 1.2e2_7_13.6t1.8c1$1$ $ 2^{2} \cdot 7 \cdot 13 $ $x^{6} - 2 x^{5} + 36 x^{4} - 46 x^{3} + 535 x^{2} - 368 x + 3121$ $C_6$ (as 6T1) $0$ $-1$
* 1.2e2_7_13.6t1.8c2$1$ $ 2^{2} \cdot 7 \cdot 13 $ $x^{6} - 2 x^{5} + 36 x^{4} - 46 x^{3} + 535 x^{2} - 368 x + 3121$ $C_6$ (as 6T1) $0$ $-1$
* 1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
*2 2.2e2_7e2_13.3t2.1c1$2$ $ 2^{2} \cdot 7^{2} \cdot 13 $ $x^{3} - x^{2} + 12 x + 8$ $S_3$ (as 3T2) $1$ $0$
*2 2.2e2_7_13.6t5.3c1$2$ $ 2^{2} \cdot 7 \cdot 13 $ $x^{18} - 4 x^{17} + 16 x^{16} - 22 x^{15} + 43 x^{14} - 16 x^{13} + 254 x^{12} - 1038 x^{11} + 4438 x^{10} - 14158 x^{9} + 33530 x^{8} - 63172 x^{7} + 96066 x^{6} - 118196 x^{5} + 113867 x^{4} - 81796 x^{3} + 41236 x^{2} - 13182 x + 2197$ $S_3 \times C_3$ (as 18T3) $0$ $0$
*2 2.2e2_7_13.6t5.3c2$2$ $ 2^{2} \cdot 7 \cdot 13 $ $x^{18} - 4 x^{17} + 16 x^{16} - 22 x^{15} + 43 x^{14} - 16 x^{13} + 254 x^{12} - 1038 x^{11} + 4438 x^{10} - 14158 x^{9} + 33530 x^{8} - 63172 x^{7} + 96066 x^{6} - 118196 x^{5} + 113867 x^{4} - 81796 x^{3} + 41236 x^{2} - 13182 x + 2197$ $S_3 \times C_3$ (as 18T3) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.