Normalized defining polynomial
\( x^{18} + 162 x^{16} + 10935 x^{14} + 398034 x^{12} + 8444007 x^{10} - 83188 x^{9} + 105225318 x^{8} - 6738228 x^{7} + 736577226 x^{6} - 181932156 x^{5} + 2582803260 x^{4} - 1819321560 x^{3} + 3486784401 x^{2} - 4912168212 x + 8082504811 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-383947619242049123161763424792980511=-\,3^{45}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(999=3^{3}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{999}(1,·)$, $\chi_{999}(776,·)$, $\chi_{999}(778,·)$, $\chi_{999}(332,·)$, $\chi_{999}(334,·)$, $\chi_{999}(665,·)$, $\chi_{999}(667,·)$, $\chi_{999}(221,·)$, $\chi_{999}(223,·)$, $\chi_{999}(998,·)$, $\chi_{999}(554,·)$, $\chi_{999}(556,·)$, $\chi_{999}(110,·)$, $\chi_{999}(112,·)$, $\chi_{999}(887,·)$, $\chi_{999}(889,·)$, $\chi_{999}(443,·)$, $\chi_{999}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{15130} a^{9} + \frac{81}{15130} a^{7} + \frac{2187}{15130} a^{5} + \frac{674}{1513} a^{3} - \frac{1471}{15130} a - \frac{3769}{15130}$, $\frac{1}{15130} a^{10} + \frac{81}{15130} a^{8} + \frac{2187}{15130} a^{6} + \frac{674}{1513} a^{4} - \frac{1471}{15130} a^{2} - \frac{3769}{15130} a$, $\frac{1}{15130} a^{11} - \frac{2187}{7565} a^{7} - \frac{3977}{15130} a^{5} - \frac{2731}{15130} a^{3} - \frac{3769}{15130} a^{2} - \frac{1889}{15130} a + \frac{2689}{15130}$, $\frac{1}{15130} a^{12} - \frac{2187}{7565} a^{8} - \frac{3977}{15130} a^{6} - \frac{2731}{15130} a^{4} - \frac{3769}{15130} a^{3} - \frac{1889}{15130} a^{2} + \frac{2689}{15130} a$, $\frac{1}{15130} a^{13} + \frac{2327}{15130} a^{7} + \frac{1047}{15130} a^{5} - \frac{3769}{15130} a^{4} + \frac{5631}{15130} a^{3} + \frac{2689}{15130} a^{2} - \frac{1952}{7565} a + \frac{3047}{7565}$, $\frac{1}{110564953793290} a^{14} + \frac{2346783663}{110564953793290} a^{13} + \frac{63}{55282476896645} a^{12} - \frac{3117537083}{110564953793290} a^{11} + \frac{6237}{110564953793290} a^{10} - \frac{721777954}{55282476896645} a^{9} + \frac{15309}{11056495379329} a^{8} + \frac{7661841651721}{22112990758658} a^{7} + \frac{964467}{55282476896645} a^{6} + \frac{15061080019597}{110564953793290} a^{5} - \frac{7936117135836}{55282476896645} a^{4} + \frac{5780293960931}{110564953793290} a^{3} + \frac{32957589927439}{110564953793290} a^{2} - \frac{16975746882541}{55282476896645} a + \frac{25598755972937}{110564953793290}$, $\frac{1}{110564953793290} a^{15} + \frac{27}{22112990758658} a^{13} + \frac{400969266}{55282476896645} a^{12} + \frac{729}{11056495379329} a^{11} - \frac{6368262}{650382081137} a^{10} + \frac{40095}{22112990758658} a^{9} - \frac{1797685053354}{55282476896645} a^{8} + \frac{295245}{11056495379329} a^{7} - \frac{6087274655833}{110564953793290} a^{6} + \frac{11160261}{55282476896645} a^{5} + \frac{20220345132241}{55282476896645} a^{4} - \frac{50342421743797}{110564953793290} a^{3} + \frac{25876680208861}{110564953793290} a^{2} - \frac{3365172020643}{11056495379329} a + \frac{394674491034}{55282476896645}$, $\frac{1}{110564953793290} a^{16} - \frac{892155577}{55282476896645} a^{13} - \frac{972}{11056495379329} a^{12} + \frac{1624031592}{55282476896645} a^{11} - \frac{64152}{11056495379329} a^{10} - \frac{2426376783}{110564953793290} a^{9} - \frac{1771470}{11056495379329} a^{8} - \frac{13789459664383}{55282476896645} a^{7} - \frac{119042784}{55282476896645} a^{6} + \frac{8236798410701}{55282476896645} a^{5} + \frac{11779210081396}{55282476896645} a^{4} - \frac{1257930112381}{3251910405685} a^{3} + \frac{6539670382999}{22112990758658} a^{2} + \frac{15147452901098}{55282476896645} a + \frac{10806743407377}{110564953793290}$, $\frac{1}{110564953793290} a^{17} - \frac{324}{3251910405685} a^{13} + \frac{18043409}{1300764162274} a^{12} - \frac{23328}{3251910405685} a^{11} - \frac{1624863472}{55282476896645} a^{10} - \frac{144342}{650382081137} a^{9} + \frac{3266450198647}{110564953793290} a^{8} - \frac{11337408}{3251910405685} a^{7} + \frac{915136273399}{3251910405685} a^{6} - \frac{89282088}{3251910405685} a^{5} - \frac{47431121437917}{110564953793290} a^{4} + \frac{1395457682087}{3251910405685} a^{3} - \frac{3927399179917}{55282476896645} a^{2} - \frac{35474337701147}{110564953793290} a - \frac{1550649812251}{55282476896645}$
Class group and class number
$C_{2}\times C_{2}\times C_{79496}$, which has order $317984$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), \(\Q(\zeta_{9})^+\), 6.0.997002999.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |