Normalized defining polynomial
\( x^{18} - 2 x^{17} + 36 x^{16} - 124 x^{15} + 667 x^{14} - 2334 x^{13} + 8164 x^{12} - 20338 x^{11} + 54321 x^{10} - 96972 x^{9} + 150518 x^{8} - 244982 x^{7} + 834376 x^{6} - 2158328 x^{5} + 4885022 x^{4} - 8338866 x^{3} + 13279313 x^{2} - 14690014 x + 10525279 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3830034706318154794675914145792=-\,2^{18}\cdot 19^{16}\cdot 37^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{427965565405381003973147713234418149013512522259760603108649} a^{17} + \frac{23088252600276962406494145315410524806261523752312407615935}{427965565405381003973147713234418149013512522259760603108649} a^{16} + \frac{123361099195093731491608097583715764154574036774675483938409}{427965565405381003973147713234418149013512522259760603108649} a^{15} + \frac{138742465218227853418278752113608779784671454461836228498074}{427965565405381003973147713234418149013512522259760603108649} a^{14} + \frac{185286679536708998514572557861331270497497327945114292064176}{427965565405381003973147713234418149013512522259760603108649} a^{13} + \frac{25539178907294385362605481464882332239285253690595750148492}{427965565405381003973147713234418149013512522259760603108649} a^{12} - \frac{173440919964409882429153647339746531194253324347490012052507}{427965565405381003973147713234418149013512522259760603108649} a^{11} + \frac{15413662693260872082522625339221290784330686538439529944}{2834209042419741748166541147247802311347765048077884788799} a^{10} - \frac{119857623160877445139732872936721386025597625604959079276801}{427965565405381003973147713234418149013512522259760603108649} a^{9} + \frac{75485753915723953479155237709595202871532112862105822057068}{427965565405381003973147713234418149013512522259760603108649} a^{8} + \frac{94707808519032168101301461022607151697551036346726141470893}{427965565405381003973147713234418149013512522259760603108649} a^{7} - \frac{155145122178330151504908882378726352874358119479083093855605}{427965565405381003973147713234418149013512522259760603108649} a^{6} + \frac{23151384295532178886522119285206028557438112284088644439091}{427965565405381003973147713234418149013512522259760603108649} a^{5} + \frac{189791498748932586269788118236761242358359791494464054461676}{427965565405381003973147713234418149013512522259760603108649} a^{4} - \frac{205660814162934966825048356920499044101399853115336288955427}{427965565405381003973147713234418149013512522259760603108649} a^{3} + \frac{83449925860830679796563980500100231221411097844647829531883}{427965565405381003973147713234418149013512522259760603108649} a^{2} - \frac{206453826673285230041644276349407303102891433377101953688732}{427965565405381003973147713234418149013512522259760603108649} a - \frac{2839851385497415843533886334477564632809991364076152443650}{11566636902848135242517505763092382405770608709723259543477}$
Class group and class number
$C_{2}\times C_{2}\times C_{570}$, which has order $2280$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_9$ (as 18T26):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_2\times C_2^2:C_9$ |
| Character table for $C_2\times C_2^2:C_9$ is not computed |
Intermediate fields
| 3.3.361.1, 6.0.308600128.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |