Normalized defining polynomial
\( x^{18} - 3 x^{17} - 42 x^{16} + 12 x^{15} + 1512 x^{14} + 1572 x^{13} - 5418 x^{12} - 3414 x^{11} + 258483 x^{10} + 481455 x^{9} + 4287204 x^{8} + 13613802 x^{7} + 73994292 x^{6} + 146257296 x^{5} + 667973280 x^{4} + 855399936 x^{3} + 3840924672 x^{2} + 1876512768 x + 11595603968 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-382767468601979969221900924428079566404384980992=-\,2^{18}\cdot 3^{30}\cdot 13^{14}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $440.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} + \frac{7}{32} a^{5} - \frac{1}{8} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{32} a^{7} - \frac{3}{32} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{64} a^{8} - \frac{1}{8} a^{7} + \frac{5}{64} a^{6} - \frac{1}{32} a^{5} - \frac{3}{32} a^{4} - \frac{5}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{1}{128} a^{11} - \frac{1}{128} a^{10} - \frac{5}{128} a^{9} - \frac{1}{128} a^{8} - \frac{3}{128} a^{7} + \frac{9}{128} a^{6} + \frac{1}{32} a^{5} + \frac{5}{64} a^{4} - \frac{7}{32} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{512} a^{14} + \frac{1}{512} a^{13} + \frac{3}{512} a^{12} + \frac{5}{512} a^{11} - \frac{5}{512} a^{10} - \frac{23}{512} a^{9} + \frac{1}{512} a^{8} - \frac{21}{512} a^{7} - \frac{5}{128} a^{6} + \frac{3}{256} a^{5} - \frac{19}{128} a^{4} - \frac{3}{16} a^{3} - \frac{5}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{142336} a^{15} + \frac{69}{71168} a^{14} - \frac{41}{17792} a^{13} - \frac{85}{35584} a^{12} - \frac{3}{256} a^{11} - \frac{21}{17792} a^{10} + \frac{3731}{71168} a^{9} - \frac{13}{556} a^{8} + \frac{15211}{142336} a^{7} - \frac{5637}{71168} a^{6} + \frac{13173}{71168} a^{5} - \frac{5929}{35584} a^{4} - \frac{1595}{8896} a^{3} - \frac{2215}{4448} a^{2} + \frac{11}{278} a - \frac{117}{278}$, $\frac{1}{6919522304} a^{16} + \frac{3367}{1729880576} a^{15} - \frac{1995641}{3459761152} a^{14} - \frac{7363901}{3459761152} a^{13} - \frac{5390959}{3459761152} a^{12} + \frac{24613897}{3459761152} a^{11} + \frac{24230501}{1729880576} a^{10} - \frac{33280597}{3459761152} a^{9} - \frac{320181131}{6919522304} a^{8} - \frac{373840163}{3459761152} a^{7} - \frac{36398189}{3459761152} a^{6} - \frac{275630473}{1729880576} a^{5} - \frac{40765759}{216235072} a^{4} - \frac{22824441}{216235072} a^{3} + \frac{8774457}{54058768} a^{2} - \frac{2539179}{6757346} a + \frac{294742}{3378673}$, $\frac{1}{14931613688928035877592040623487827613795024371712} a^{17} + \frac{669401012943878820408676230530697382481}{14931613688928035877592040623487827613795024371712} a^{16} + \frac{24959349589859939482809980436632669390209589}{7465806844464017938796020311743913806897512185856} a^{15} - \frac{2395194814672969270208901380292828302398785}{26855420303827402657539641409150769089559396352} a^{14} - \frac{3704983711267723749740939623484028188263196817}{1866451711116004484699005077935978451724378046464} a^{13} + \frac{21642571026824254799666818933036101048126114401}{3732903422232008969398010155871956903448756092928} a^{12} + \frac{4249226574798087232511643676809469129788997907}{7465806844464017938796020311743913806897512185856} a^{11} + \frac{57339576769499330963498442831565840632781805969}{7465806844464017938796020311743913806897512185856} a^{10} - \frac{178540157021257024006836726934098212647646540581}{14931613688928035877592040623487827613795024371712} a^{9} - \frac{2809201425471520295552318099503554785960817013}{14931613688928035877592040623487827613795024371712} a^{8} + \frac{3796265656739109107945576030045835755075707181}{116653231944750280293687817370998653232773627904} a^{7} - \frac{168357454079526983234056366165511314010497923467}{7465806844464017938796020311743913806897512185856} a^{6} + \frac{907315783080058843706536075395824624150912376895}{3732903422232008969398010155871956903448756092928} a^{5} - \frac{53584797155547356337936741006243286465559147519}{233306463889500560587375634741997306465547255808} a^{4} - \frac{127175925988517232524384450194845200925435346851}{466612927779001121174751269483994612931094511616} a^{3} + \frac{50288834985902601437655838543237456190553708253}{116653231944750280293687817370998653232773627904} a^{2} + \frac{4460031807692844674414265318523391043444426383}{29163307986187570073421954342749663308193406976} a + \frac{511212525349747275109025768158627914794990693}{7290826996546892518355488585687415827048351744}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{236316906}$, which has order $38283338772$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3533133948.6916637 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.13689.1, 3.3.2808.1, 6.0.2279958568407.4, 6.0.95935140288.2, 9.9.460990789028310528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.9.15.29 | $x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 12$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.29 | $x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 12$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.5.4 | $x^{6} + 26$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.4 | $x^{6} + 26$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |