Normalized defining polynomial
\( x^{18} + 18 x^{16} - 18 x^{15} + 243 x^{14} - 306 x^{13} + 1764 x^{12} - 2916 x^{11} + 11979 x^{10} - 15620 x^{9} + 36450 x^{8} - 41922 x^{7} + 55053 x^{6} - 52002 x^{5} + 46152 x^{4} - 28872 x^{3} + 19764 x^{2} - 7848 x + 2656 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-378152026438506713426304000000000=-\,2^{16}\cdot 3^{45}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} + \frac{1}{64} a^{9} + \frac{3}{64} a^{8} + \frac{5}{64} a^{7} + \frac{3}{64} a^{6} + \frac{3}{32} a^{5} - \frac{1}{16} a^{4} + \frac{7}{16} a^{3} + \frac{7}{16} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{128} a^{14} + \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{3}{64} a^{9} + \frac{3}{64} a^{8} + \frac{5}{64} a^{7} - \frac{9}{128} a^{6} + \frac{9}{64} a^{5} + \frac{3}{16} a^{4} + \frac{7}{16} a^{3} - \frac{13}{32} a^{2} + \frac{5}{16} a + \frac{1}{4}$, $\frac{1}{256} a^{15} - \frac{1}{256} a^{14} - \frac{1}{128} a^{13} - \frac{3}{128} a^{11} - \frac{1}{128} a^{10} + \frac{1}{64} a^{9} - \frac{15}{256} a^{7} - \frac{9}{256} a^{6} - \frac{13}{128} a^{5} - \frac{1}{8} a^{4} + \frac{21}{64} a^{3} - \frac{13}{64} a^{2} + \frac{11}{32} a - \frac{1}{8}$, $\frac{1}{512} a^{16} + \frac{1}{512} a^{14} - \frac{1}{256} a^{13} - \frac{7}{256} a^{12} + \frac{1}{256} a^{10} + \frac{3}{128} a^{9} - \frac{7}{512} a^{8} + \frac{1}{16} a^{7} - \frac{23}{512} a^{6} + \frac{15}{256} a^{5} - \frac{19}{128} a^{4} + \frac{7}{16} a^{3} - \frac{59}{128} a^{2} - \frac{5}{64} a + \frac{3}{16}$, $\frac{1}{26627064556052997143552} a^{17} + \frac{7508644524189408533}{26627064556052997143552} a^{16} - \frac{35826187311284599389}{26627064556052997143552} a^{15} + \frac{45528594494414389973}{26627064556052997143552} a^{14} - \frac{16593971734459548549}{6656766139013249285888} a^{13} - \frac{404460755919832253659}{13313532278026498571776} a^{12} + \frac{282168108152791958803}{13313532278026498571776} a^{11} - \frac{47312052257312760859}{13313532278026498571776} a^{10} - \frac{125190289915490865827}{26627064556052997143552} a^{9} - \frac{1624178158252853127843}{26627064556052997143552} a^{8} - \frac{3041415443179060211173}{26627064556052997143552} a^{7} - \frac{1785979683719060016067}{26627064556052997143552} a^{6} - \frac{559231786521834860217}{13313532278026498571776} a^{5} - \frac{1544860885518183376311}{6656766139013249285888} a^{4} + \frac{1915246250272994025159}{6656766139013249285888} a^{3} + \frac{690100075440970270985}{6656766139013249285888} a^{2} + \frac{716457486381459700581}{3328383069506624642944} a - \frac{117266735837170622231}{832095767376656160736}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 369617552674 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_9$ (as 18T50):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $S_3\times D_9$ |
| Character table for $S_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.324.1, 6.0.39366000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||