Normalized defining polynomial
\( x^{18} - 9 x^{17} + 258 x^{16} - 1706 x^{15} + 25692 x^{14} - 123246 x^{13} + 1221682 x^{12} - 4356336 x^{11} + 28639551 x^{10} - 81366637 x^{9} + 336386712 x^{8} - 771159882 x^{7} + 2020760692 x^{6} - 3333464652 x^{5} + 16394855484 x^{4} - 26333009892 x^{3} + 201734400000 x^{2} - 303589255200 x + 486213973000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3776542477491033702973795200304073601024=-\,2^{12}\cdot 3^{21}\cdot 7^{14}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{28} a^{15} - \frac{1}{28} a^{14} - \frac{1}{28} a^{12} + \frac{1}{14} a^{11} + \frac{3}{28} a^{10} - \frac{3}{14} a^{9} - \frac{1}{4} a^{8} - \frac{5}{28} a^{7} + \frac{3}{14} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{140} a^{16} + \frac{1}{140} a^{15} - \frac{1}{70} a^{14} - \frac{1}{140} a^{13} + \frac{1}{20} a^{12} - \frac{3}{20} a^{11} + \frac{1}{20} a^{10} + \frac{9}{140} a^{9} + \frac{4}{35} a^{8} - \frac{8}{35} a^{7} - \frac{23}{140} a^{6} - \frac{3}{10} a^{5} + \frac{3}{10} a^{4} - \frac{3}{10} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{14647924251638750433063601054508043215128591743612485076542759408755407014438496921762610100} a^{17} + \frac{2461293912001624945249730727282926047629858145564811817982676926022426728863788298027141}{14647924251638750433063601054508043215128591743612485076542759408755407014438496921762610100} a^{16} - \frac{3811699839749811916443072388964987712570612106993529820972967878368158845448148779226948}{3661981062909687608265900263627010803782147935903121269135689852188851753609624230440652525} a^{15} - \frac{183232763411856829077254571254061646352590177682611027288936883246750410061885164486821203}{7323962125819375216531800527254021607564295871806242538271379704377703507219248460881305050} a^{14} - \frac{23576313233633224616988846922904715775830752728278713126584661706521784817525977572559979}{7323962125819375216531800527254021607564295871806242538271379704377703507219248460881305050} a^{13} + \frac{1762312065534135403829129305151425749733649476931811440244700785884759334880092660971915729}{14647924251638750433063601054508043215128591743612485076542759408755407014438496921762610100} a^{12} + \frac{154915524178575474647835488011314863679773121547488738154002294302185605084855709333853691}{7323962125819375216531800527254021607564295871806242538271379704377703507219248460881305050} a^{11} + \frac{2132885970456765010297139212584511382261345978815401713375307479781063955945185965502085689}{14647924251638750433063601054508043215128591743612485076542759408755407014438496921762610100} a^{10} - \frac{2414160529917426332766575627375454373878152098358639397823861966188455233536898060185494449}{14647924251638750433063601054508043215128591743612485076542759408755407014438496921762610100} a^{9} - \frac{876259099788993181245005103246609571936553012918368062030982374902425486590115045516961653}{3661981062909687608265900263627010803782147935903121269135689852188851753609624230440652525} a^{8} - \frac{708932782346968216373791638445252434827901346772996621312516156626460545534733745342314547}{3661981062909687608265900263627010803782147935903121269135689852188851753609624230440652525} a^{7} - \frac{109143176024161371432751672305586399831940988369658771461014339500599333830701182584105301}{2092560607376964347580514436358291887875513106230355010934679915536486716348356703108944300} a^{6} + \frac{231340700754878007421923522728610313517201266697475784322650604887041414143787665926122153}{1046280303688482173790257218179145943937756553115177505467339957768243358174178351554472150} a^{5} - \frac{139396588713127242054039241591905400393958589886456549294913108884660638083293319941854043}{1046280303688482173790257218179145943937756553115177505467339957768243358174178351554472150} a^{4} + \frac{419167522609274273627930626953107084788754081717351484918825206919702028864029309662079381}{1046280303688482173790257218179145943937756553115177505467339957768243358174178351554472150} a^{3} + \frac{222803419693396025819022597516999924981036343644183628416476106024052399542699643430271586}{523140151844241086895128609089572971968878276557588752733669978884121679087089175777236075} a^{2} + \frac{8697134253425348983437522601081897070480991250163645581842951969849166805941984308198185}{20925606073769643475805144363582918878755131062303550109346799155364867163483567031089443} a - \frac{9514280821931761515866791252096076208767889878672764481162024395686096410202677598139329}{20925606073769643475805144363582918878755131062303550109346799155364867163483567031089443}$
Class group and class number
$C_{18}\times C_{54}\times C_{12312}$, which has order $11967264$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), 3.3.756.1, \(\Q(\zeta_{7})^+\), 6.0.86850039024.2, 6.0.3283682031.3, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |