Normalized defining polynomial
\( x^{18} - 5 x^{16} - 16 x^{15} - 20 x^{14} + 152 x^{13} + 370 x^{12} + 32 x^{11} - 2786 x^{10} - 3960 x^{9} + 13300 x^{8} + 14472 x^{7} - 12096 x^{6} - 79632 x^{5} + 22194 x^{4} + 192240 x^{3} - 108675 x^{2} - 139320 x + 106677 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-37621770755235979566165000192=-\,2^{20}\cdot 3^{9}\cdot 67^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{18} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{7}{18} a^{5} - \frac{5}{18} a^{4} + \frac{1}{18} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{18} a^{9} + \frac{1}{3} a^{5} - \frac{2}{9} a^{3} - \frac{1}{6} a$, $\frac{1}{18} a^{10} + \frac{4}{9} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{11} + \frac{4}{9} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{108} a^{12} - \frac{1}{54} a^{10} - \frac{1}{54} a^{9} + \frac{1}{108} a^{8} - \frac{1}{54} a^{7} - \frac{1}{18} a^{6} + \frac{23}{54} a^{5} + \frac{5}{12} a^{4} + \frac{7}{18} a^{3} + \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{324} a^{13} + \frac{1}{81} a^{11} - \frac{1}{162} a^{10} + \frac{1}{324} a^{9} - \frac{1}{162} a^{8} + \frac{1}{27} a^{7} - \frac{2}{81} a^{6} + \frac{37}{108} a^{5} - \frac{1}{27} a^{4} + \frac{2}{9} a^{3} + \frac{5}{18} a^{2} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{324} a^{14} + \frac{1}{324} a^{12} - \frac{1}{162} a^{11} + \frac{7}{324} a^{10} + \frac{1}{81} a^{9} - \frac{1}{36} a^{8} - \frac{5}{81} a^{7} + \frac{1}{108} a^{6} + \frac{4}{27} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{12} a^{2} + \frac{1}{4}$, $\frac{1}{648} a^{15} - \frac{1}{648} a^{14} - \frac{1}{648} a^{13} - \frac{1}{216} a^{12} + \frac{1}{648} a^{11} - \frac{17}{648} a^{10} - \frac{5}{216} a^{9} + \frac{11}{648} a^{8} - \frac{37}{648} a^{7} + \frac{25}{648} a^{6} + \frac{5}{72} a^{5} - \frac{79}{216} a^{4} - \frac{17}{72} a^{3} - \frac{11}{72} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{1944} a^{16} - \frac{1}{1944} a^{15} - \frac{1}{1944} a^{14} - \frac{1}{648} a^{13} + \frac{1}{1944} a^{12} - \frac{53}{1944} a^{11} + \frac{7}{648} a^{10} + \frac{47}{1944} a^{9} - \frac{1}{1944} a^{8} - \frac{155}{1944} a^{7} - \frac{5}{72} a^{6} + \frac{125}{648} a^{5} - \frac{101}{216} a^{4} + \frac{61}{216} a^{3} + \frac{7}{24} a^{2} + \frac{3}{8} a$, $\frac{1}{276203944999126021453272} a^{17} + \frac{3270682003473645593}{30689327222125113494808} a^{16} - \frac{88643657044503363989}{276203944999126021453272} a^{15} + \frac{335658694543888464539}{276203944999126021453272} a^{14} + \frac{227703084533723112793}{276203944999126021453272} a^{13} - \frac{434306225711242681969}{276203944999126021453272} a^{12} + \frac{928461136570098012529}{276203944999126021453272} a^{11} + \frac{917738568020931904673}{276203944999126021453272} a^{10} + \frac{541417605082788699895}{276203944999126021453272} a^{9} + \frac{1135156111731333928007}{92067981666375340484424} a^{8} - \frac{19434710485793124872567}{276203944999126021453272} a^{7} + \frac{3989595180082024708739}{92067981666375340484424} a^{6} - \frac{32103263581100446623667}{92067981666375340484424} a^{5} + \frac{10868719446310691114321}{30689327222125113494808} a^{4} - \frac{14627602693297580080217}{30689327222125113494808} a^{3} - \frac{603783882976131988537}{3409925246902790388312} a^{2} - \frac{45842678820024999693}{284160437241899199026} a + \frac{232664234173614755169}{568320874483798398052}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13149390871}{101161545473124} a^{17} + \frac{17105954305}{202323090946248} a^{16} - \frac{108972610469}{202323090946248} a^{15} - \frac{170418584869}{67441030315416} a^{14} - \frac{925569130669}{202323090946248} a^{13} + \frac{3251323147535}{202323090946248} a^{12} + \frac{3976104782173}{67441030315416} a^{11} + \frac{11085754317583}{202323090946248} a^{10} - \frac{63407050411535}{202323090946248} a^{9} - \frac{151288649895223}{202323090946248} a^{8} + \frac{69728492846111}{67441030315416} a^{7} + \frac{166325193411949}{67441030315416} a^{6} + \frac{25138580073269}{22480343438472} a^{5} - \frac{208906423498651}{22480343438472} a^{4} - \frac{3450147519897}{832605312536} a^{3} + \frac{41748836071829}{2497815937608} a^{2} + \frac{3757648791533}{2497815937608} a - \frac{3608743361031}{416302656268} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 306761663.9033038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.804.1, 6.0.1939248.2, 6.0.1939248.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $67$ | 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.6.5.3 | $x^{6} - 17152$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 67.6.3.1 | $x^{6} - 134 x^{4} + 4489 x^{2} - 76995328$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |