Normalized defining polynomial
\( x^{18} - x^{17} + 11 x^{16} - 13 x^{15} + 115 x^{14} - 157 x^{13} + 1203 x^{12} - 270 x^{11} + 11044 x^{10} - 4120 x^{9} + 112400 x^{8} - 65248 x^{7} + 1156288 x^{6} - 909568 x^{5} + 715776 x^{4} - 561152 x^{3} + 442368 x^{2} - 327680 x + 262144 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3739477515129074045367351773623=-\,7^{15}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(217=7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{217}(1,·)$, $\chi_{217}(67,·)$, $\chi_{217}(5,·)$, $\chi_{217}(32,·)$, $\chi_{217}(211,·)$, $\chi_{217}(149,·)$, $\chi_{217}(87,·)$, $\chi_{217}(25,·)$, $\chi_{217}(156,·)$, $\chi_{217}(94,·)$, $\chi_{217}(160,·)$, $\chi_{217}(36,·)$, $\chi_{217}(129,·)$, $\chi_{217}(180,·)$, $\chi_{217}(118,·)$, $\chi_{217}(187,·)$, $\chi_{217}(125,·)$, $\chi_{217}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} + \frac{15}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} - \frac{1}{64} a^{8} + \frac{15}{64} a^{7} + \frac{31}{64} a^{6} + \frac{15}{32} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4992849152} a^{13} - \frac{21118249}{4992849152} a^{12} + \frac{2312067}{4992849152} a^{11} + \frac{98558523}{4992849152} a^{10} - \frac{244383845}{4992849152} a^{9} + \frac{253323}{4992849152} a^{8} + \frac{840800987}{4992849152} a^{7} - \frac{454542771}{2496424576} a^{6} + \frac{429943997}{1248212288} a^{5} + \frac{143683155}{624106144} a^{4} - \frac{95133817}{312053072} a^{3} + \frac{56586113}{156026536} a^{2} - \frac{24927859}{78013268} a + \frac{142722}{19503317}$, $\frac{1}{19971396608} a^{14} - \frac{1}{19971396608} a^{13} - \frac{95901653}{19971396608} a^{12} - \frac{41318701}{19971396608} a^{11} + \frac{330514451}{19971396608} a^{10} + \frac{985509891}{19971396608} a^{9} + \frac{1989085011}{19971396608} a^{8} - \frac{1292082487}{9985698304} a^{7} - \frac{2395924751}{4992849152} a^{6} - \frac{263730291}{2496424576} a^{5} - \frac{140103187}{1248212288} a^{4} + \frac{96325201}{624106144} a^{3} - \frac{77051349}{312053072} a^{2} - \frac{8395523}{78013268} a - \frac{1004531}{19503317}$, $\frac{1}{79885586432} a^{15} - \frac{1}{79885586432} a^{14} - \frac{5}{79885586432} a^{13} - \frac{557521533}{79885586432} a^{12} + \frac{183472835}{79885586432} a^{11} - \frac{765839053}{79885586432} a^{10} - \frac{1859604861}{79885586432} a^{9} - \frac{3719799583}{39942793216} a^{8} - \frac{4320790467}{19971396608} a^{7} - \frac{2781516231}{9985698304} a^{6} + \frac{949697925}{4992849152} a^{5} + \frac{322606469}{2496424576} a^{4} + \frac{601624367}{1248212288} a^{3} + \frac{103594813}{312053072} a^{2} + \frac{3228973}{19503317} a + \frac{197612}{19503317}$, $\frac{1}{319542345728} a^{16} - \frac{1}{319542345728} a^{15} - \frac{5}{319542345728} a^{14} + \frac{3}{319542345728} a^{13} + \frac{1301877443}{319542345728} a^{12} - \frac{4946906317}{319542345728} a^{11} - \frac{2005715837}{319542345728} a^{10} - \frac{107065375}{159771172864} a^{9} + \frac{5116827069}{79885586432} a^{8} + \frac{1385399545}{39942793216} a^{7} - \frac{7979094083}{19971396608} a^{6} + \frac{4015572021}{9985698304} a^{5} + \frac{997354143}{4992849152} a^{4} - \frac{389619571}{1248212288} a^{3} - \frac{14610051}{78013268} a^{2} + \frac{16145153}{39006634} a - \frac{7004288}{19503317}$, $\frac{1}{1278169382912} a^{17} - \frac{1}{1278169382912} a^{16} - \frac{5}{1278169382912} a^{15} + \frac{3}{1278169382912} a^{14} - \frac{61}{1278169382912} a^{13} - \frac{5147881421}{1278169382912} a^{12} - \frac{11023886973}{1278169382912} a^{11} + \frac{18161031265}{639084691456} a^{10} - \frac{6993202691}{319542345728} a^{9} + \frac{4149691673}{159771172864} a^{8} - \frac{1396821299}{79885586432} a^{7} + \frac{4079437141}{39942793216} a^{6} + \frac{1038887727}{19971396608} a^{5} - \frac{2256530083}{4992849152} a^{4} + \frac{12394061}{156026536} a^{3} - \frac{24013201}{78013268} a^{2} + \frac{3616505}{39006634} a + \frac{9062757}{19503317}$
Class group and class number
$C_{259}$, which has order $259$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{147855}{639084691456} a^{17} - \frac{1626405}{639084691456} a^{16} + \frac{1922115}{639084691456} a^{15} - \frac{17003325}{639084691456} a^{14} + \frac{23213235}{639084691456} a^{13} - \frac{177869565}{639084691456} a^{12} + \frac{273707027}{639084691456} a^{11} - \frac{408227655}{159771172864} a^{10} + \frac{76145325}{79885586432} a^{9} - \frac{1038681375}{39942793216} a^{8} + \frac{301476345}{19971396608} a^{7} - \frac{2671296285}{9985698304} a^{6} + \frac{525328815}{2496424576} a^{5} - \frac{13854742733}{4992849152} a^{4} + \frac{20256135}{156026536} a^{3} - \frac{3992085}{39006634} a^{2} + \frac{1478550}{19503317} a - \frac{1182840}{19503317} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2999047.75971 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.47089.1, 3.3.961.1, \(\Q(\zeta_{7})^+\), 3.3.47089.2, 6.0.15521617447.1, 6.0.316767703.1, \(\Q(\zeta_{7})\), 6.0.15521617447.2, 9.9.104413920565969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 31 | Data not computed | ||||||