Normalized defining polynomial
\( x^{18} - 9 x^{15} - 90 x^{14} + 315 x^{12} + 1080 x^{11} + 3420 x^{10} + 5805 x^{9} + 11340 x^{8} + 6480 x^{7} - 9180 x^{6} - 32940 x^{5} - 32400 x^{4} - 1944 x^{3} + 49680 x^{2} + 28080 x + 22056 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-369289088318854212330375000000000000=-\,2^{12}\cdot 3^{45}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6}$, $\frac{1}{292} a^{16} - \frac{25}{292} a^{15} - \frac{16}{73} a^{14} + \frac{55}{292} a^{13} - \frac{1}{292} a^{12} + \frac{45}{146} a^{11} - \frac{5}{292} a^{10} + \frac{77}{292} a^{9} - \frac{6}{73} a^{8} + \frac{145}{292} a^{7} + \frac{15}{292} a^{6} - \frac{17}{73} a^{5} - \frac{19}{73} a^{4} + \frac{11}{73} a^{3} - \frac{29}{73} a^{2} + \frac{33}{73} a - \frac{33}{73}$, $\frac{1}{130344573018927980677505847370739981428} a^{17} + \frac{107915088981889184684775325345877361}{65172286509463990338752923685369990714} a^{16} + \frac{11591043295872192508743991003625630873}{130344573018927980677505847370739981428} a^{15} - \frac{2493235292677512665555658585161308171}{130344573018927980677505847370739981428} a^{14} + \frac{7074643531951705778425427592817283221}{65172286509463990338752923685369990714} a^{13} + \frac{13789830230377868789751783752638119541}{130344573018927980677505847370739981428} a^{12} + \frac{60932822835996274408739564723098929583}{130344573018927980677505847370739981428} a^{11} - \frac{13588376221631824939987715252904145952}{32586143254731995169376461842684995357} a^{10} - \frac{16624037200712662193546412874563362135}{130344573018927980677505847370739981428} a^{9} + \frac{52320342146555857788282192709391844047}{130344573018927980677505847370739981428} a^{8} + \frac{14723979091454967996454271851374676337}{32586143254731995169376461842684995357} a^{7} - \frac{62195315225028720769561288958869569029}{130344573018927980677505847370739981428} a^{6} - \frac{29010822210031814031046186949856137523}{65172286509463990338752923685369990714} a^{5} + \frac{20731171237329171620584497704314582955}{65172286509463990338752923685369990714} a^{4} - \frac{10773936348904751566665141219775469725}{65172286509463990338752923685369990714} a^{3} - \frac{6705417493096087589099954929890298358}{32586143254731995169376461842684995357} a^{2} - \frac{6808423768143553170204303323968960415}{32586143254731995169376461842684995357} a + \frac{2262350075450311957946780408096322596}{32586143254731995169376461842684995357}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33562079435.249725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.243.1, 6.0.22143375.1, 9.1.31381059609000000.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |