Normalized defining polynomial
\( x^{18} - 5 x^{17} + 6 x^{16} + 3 x^{15} - 5 x^{14} + 25 x^{13} - 25 x^{12} - 10 x^{11} + 85 x^{10} + 55 x^{9} - 4 x^{8} + 50 x^{7} + 186 x^{6} + 123 x^{5} + 170 x^{4} + 248 x^{3} + 225 x^{2} + 78 x + 9 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3677222437875000000000000=-\,2^{12}\cdot 3^{6}\cdot 5^{15}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{2}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{2}{9} a^{7} + \frac{1}{3} a^{6} - \frac{2}{9} a^{5} + \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} - \frac{1}{27} a^{12} + \frac{2}{27} a^{11} + \frac{1}{27} a^{10} + \frac{4}{27} a^{9} - \frac{13}{27} a^{8} - \frac{7}{27} a^{7} - \frac{5}{27} a^{6} + \frac{4}{27} a^{5} - \frac{10}{27} a^{4} - \frac{1}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{13} + \frac{2}{27} a^{11} + \frac{1}{9} a^{10} + \frac{4}{27} a^{9} + \frac{1}{9} a^{8} - \frac{4}{27} a^{7} + \frac{7}{27} a^{5} + \frac{2}{9} a^{4} - \frac{5}{27} a^{3} - \frac{1}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{13} - \frac{2}{27} a^{11} + \frac{1}{9} a^{10} - \frac{1}{27} a^{9} - \frac{4}{9} a^{8} - \frac{5}{27} a^{7} + \frac{1}{9} a^{6} - \frac{7}{27} a^{5} - \frac{7}{27} a^{4} + \frac{4}{27} a^{3} - \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{11277476548497} a^{17} - \frac{3636663829}{11277476548497} a^{16} - \frac{181717046182}{11277476548497} a^{15} - \frac{53544052}{41614304607} a^{14} + \frac{102156052321}{3759158849499} a^{13} + \frac{444701047963}{11277476548497} a^{12} + \frac{123403233815}{3759158849499} a^{11} - \frac{1120807407940}{11277476548497} a^{10} + \frac{30476285918}{3759158849499} a^{9} + \frac{137972963870}{663380973441} a^{8} - \frac{853972165012}{3759158849499} a^{7} + \frac{3487865152283}{11277476548497} a^{6} + \frac{5364075443945}{11277476548497} a^{5} - \frac{3779117811946}{11277476548497} a^{4} - \frac{1896158548028}{11277476548497} a^{3} + \frac{196729674241}{3759158849499} a^{2} - \frac{1358927254487}{3759158849499} a - \frac{351815605552}{1253052949833}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68107.00331887082 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.1.300.1, 3.1.175.1, 6.0.1071875.1, 6.0.154350000.1, 9.1.9261000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |