Normalized defining polynomial
\( x^{18} + 126 x^{16} + 6615 x^{14} + 187278 x^{12} + 3090087 x^{10} + 29950074 x^{8} + 163061514 x^{6} + 444713220 x^{4} + 466948881 x^{2} + 107354541 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3676774411522871683138204076633580896256=-\,2^{18}\cdot 3^{45}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $157.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(756=2^{2}\cdot 3^{3}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{756}(1,·)$, $\chi_{756}(131,·)$, $\chi_{756}(503,·)$, $\chi_{756}(529,·)$, $\chi_{756}(277,·)$, $\chi_{756}(505,·)$, $\chi_{756}(25,·)$, $\chi_{756}(731,·)$, $\chi_{756}(479,·)$, $\chi_{756}(227,·)$, $\chi_{756}(625,·)$, $\chi_{756}(755,·)$, $\chi_{756}(373,·)$, $\chi_{756}(251,·)$, $\chi_{756}(121,·)$, $\chi_{756}(635,·)$, $\chi_{756}(253,·)$, $\chi_{756}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{2261} a^{9} + \frac{9}{323} a^{7} - \frac{134}{323} a^{5} - \frac{145}{323} a^{3} - \frac{143}{323} a$, $\frac{1}{897617} a^{10} + \frac{10399}{897617} a^{8} - \frac{61016}{897617} a^{6} + \frac{37969}{128231} a^{4} + \frac{27958}{128231} a^{2} + \frac{117}{397}$, $\frac{1}{897617} a^{11} + \frac{11}{128231} a^{9} + \frac{58084}{897617} a^{7} + \frac{10576}{128231} a^{5} - \frac{14124}{128231} a^{3} - \frac{24935}{128231} a$, $\frac{1}{6283319} a^{12} + \frac{3821}{897617} a^{8} + \frac{40597}{897617} a^{6} - \frac{16665}{128231} a^{4} + \frac{318}{128231} a^{2} - \frac{96}{397}$, $\frac{1}{6283319} a^{13} - \frac{149}{897617} a^{9} + \frac{353}{6749} a^{7} + \frac{2391}{128231} a^{5} + \frac{63044}{128231} a^{3} + \frac{23778}{128231} a$, $\frac{1}{6283319} a^{14} + \frac{57628}{897617} a^{8} + \frac{1566}{47243} a^{6} - \frac{2630}{6749} a^{4} - \frac{42103}{128231} a^{2} - \frac{35}{397}$, $\frac{1}{6283319} a^{15} + \frac{9}{128231} a^{9} - \frac{6373}{897617} a^{7} - \frac{30120}{128231} a^{5} - \frac{30193}{128231} a^{3} + \frac{13706}{128231} a$, $\frac{1}{6283319} a^{16} - \frac{20355}{897617} a^{8} + \frac{6100}{128231} a^{6} + \frac{14149}{128231} a^{4} + \frac{47586}{128231} a^{2} + \frac{172}{397}$, $\frac{1}{6283319} a^{17} - \frac{108}{897617} a^{9} + \frac{35951}{897617} a^{7} - \frac{6098}{128231} a^{5} + \frac{61084}{128231} a^{3} - \frac{1099}{7543} a$
Class group and class number
$C_{2}\times C_{604086}$, which has order $1208172$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10392888.21418944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{9})^+\), 6.0.432081216.1, 9.9.3691950281939241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||