Normalized defining polynomial
\( x^{18} - 5 x^{17} + 22 x^{16} - 84 x^{15} + 232 x^{14} - 559 x^{13} + 1199 x^{12} - 2031 x^{11} + 2823 x^{10} - 3592 x^{9} + 3830 x^{8} - 2694 x^{7} + 656 x^{6} + 1087 x^{5} - 1604 x^{4} + 1065 x^{3} - 742 x^{2} - 54 x + 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-365958403811771477871871=-\,7^{12}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{93} a^{12} - \frac{5}{93} a^{11} + \frac{4}{93} a^{10} - \frac{2}{93} a^{9} - \frac{12}{31} a^{8} - \frac{12}{31} a^{7} - \frac{13}{31} a^{6} + \frac{2}{31} a^{5} + \frac{20}{93} a^{4} + \frac{44}{93} a^{3} - \frac{16}{93} a^{2} - \frac{4}{93} a - \frac{10}{31}$, $\frac{1}{93} a^{13} + \frac{10}{93} a^{11} - \frac{13}{93} a^{10} - \frac{5}{31} a^{9} - \frac{10}{31} a^{8} - \frac{11}{31} a^{7} - \frac{1}{31} a^{6} - \frac{43}{93} a^{5} - \frac{14}{31} a^{4} - \frac{13}{93} a^{3} + \frac{40}{93} a^{2} + \frac{4}{31} a + \frac{12}{31}$, $\frac{1}{279} a^{14} - \frac{1}{279} a^{12} + \frac{11}{279} a^{11} + \frac{34}{279} a^{10} + \frac{23}{279} a^{9} + \frac{28}{93} a^{8} + \frac{38}{93} a^{7} - \frac{79}{279} a^{6} - \frac{12}{31} a^{5} + \frac{46}{279} a^{4} - \frac{41}{279} a^{3} + \frac{2}{279} a^{2} - \frac{137}{279} a - \frac{15}{31}$, $\frac{1}{837} a^{15} - \frac{1}{837} a^{14} - \frac{4}{837} a^{13} + \frac{1}{279} a^{12} - \frac{55}{837} a^{11} - \frac{8}{837} a^{10} - \frac{2}{27} a^{9} - \frac{38}{279} a^{8} + \frac{230}{837} a^{7} + \frac{52}{837} a^{6} - \frac{50}{837} a^{5} + \frac{139}{279} a^{4} + \frac{58}{837} a^{3} + \frac{164}{837} a^{2} + \frac{188}{837} a + \frac{11}{31}$, $\frac{1}{77841} a^{16} + \frac{35}{77841} a^{15} - \frac{94}{77841} a^{14} + \frac{97}{25947} a^{13} - \frac{190}{77841} a^{12} - \frac{5984}{77841} a^{11} - \frac{191}{2511} a^{10} - \frac{4181}{25947} a^{9} - \frac{34114}{77841} a^{8} - \frac{9758}{77841} a^{7} - \frac{19616}{77841} a^{6} - \frac{10883}{25947} a^{5} + \frac{7753}{77841} a^{4} - \frac{7522}{77841} a^{3} - \frac{8533}{77841} a^{2} - \frac{1064}{8649} a + \frac{369}{961}$, $\frac{1}{50439008975553} a^{17} + \frac{2353357}{5604334330617} a^{16} - \frac{23199026261}{50439008975553} a^{15} - \frac{86803845679}{50439008975553} a^{14} + \frac{258019514354}{50439008975553} a^{13} - \frac{17805692350}{5604334330617} a^{12} + \frac{5152665155510}{50439008975553} a^{11} - \frac{3567758982845}{50439008975553} a^{10} - \frac{3958200167032}{50439008975553} a^{9} + \frac{7362004977694}{16813002991851} a^{8} + \frac{3945907644410}{50439008975553} a^{7} + \frac{8509441762924}{50439008975553} a^{6} + \frac{12360424855138}{50439008975553} a^{5} + \frac{223841007869}{542354935221} a^{4} + \frac{13468090461706}{50439008975553} a^{3} - \frac{15690891037006}{50439008975553} a^{2} - \frac{414319745770}{5604334330617} a - \frac{91688154820}{207567938171}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12668.0200523 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, 6.0.29791.1, 9.1.108651322129.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.2 | $x^{9} - 49 x^{3} + 686$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 7.9.6.2 | $x^{9} - 49 x^{3} + 686$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |