Normalized defining polynomial
\( x^{18} - 3 x^{17} + 17 x^{16} - 30 x^{15} + 79 x^{14} - 126 x^{13} + 174 x^{12} - 66 x^{11} + 224 x^{10} - 138 x^{9} + 476 x^{8} - 384 x^{7} + 454 x^{6} - 294 x^{5} + 193 x^{4} - 93 x^{3} + 33 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-365958403811771477871871=-\,7^{12}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{12} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a + \frac{5}{16}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{16} a + \frac{1}{4}$, $\frac{1}{932528} a^{16} - \frac{4081}{233132} a^{15} - \frac{1747}{932528} a^{14} + \frac{2695}{116566} a^{13} + \frac{41903}{466264} a^{12} + \frac{2661}{233132} a^{11} - \frac{22465}{116566} a^{10} + \frac{4375}{233132} a^{9} - \frac{20759}{116566} a^{8} - \frac{14569}{233132} a^{7} - \frac{96239}{233132} a^{6} + \frac{192207}{466264} a^{5} + \frac{20299}{58283} a^{4} + \frac{39297}{116566} a^{3} + \frac{265787}{932528} a^{2} - \frac{28155}{58283} a - \frac{292225}{932528}$, $\frac{1}{7359510976} a^{17} + \frac{1423}{3679755488} a^{16} - \frac{29094617}{7359510976} a^{15} + \frac{44222809}{7359510976} a^{14} - \frac{11345535}{229984718} a^{13} + \frac{796932985}{3679755488} a^{12} + \frac{13647201}{114992359} a^{11} + \frac{223753335}{3679755488} a^{10} - \frac{50731937}{3679755488} a^{9} + \frac{14102505}{1839877744} a^{8} + \frac{43208457}{459969436} a^{7} - \frac{3675651}{114992359} a^{6} + \frac{609234955}{3679755488} a^{5} - \frac{138105681}{459969436} a^{4} + \frac{226646113}{7359510976} a^{3} + \frac{541316541}{1839877744} a^{2} - \frac{807770963}{7359510976} a + \frac{58200295}{7359510976}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7064.88214687 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, \(\Q(\zeta_{7})^+\), 6.0.29791.1, 6.0.71528191.2 x2, 6.0.71528191.1, 9.3.3504881359.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.71528191.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |