Normalized defining polynomial
\( x^{18} - 6 x^{17} - 3 x^{16} + 68 x^{15} + 12 x^{14} - 579 x^{13} + 346 x^{12} + 2376 x^{11} - 2700 x^{10} - 4481 x^{9} + 7767 x^{8} + 2976 x^{7} - 10499 x^{6} + 741 x^{5} + 6063 x^{4} - 345 x^{3} + 198 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-36542633964773200992350208=-\,2^{12}\cdot 3^{21}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1525018018320474019231037} a^{17} - \frac{312230638545564957862933}{1525018018320474019231037} a^{16} + \frac{662503618725064814772505}{1525018018320474019231037} a^{15} + \frac{670324246153728308364958}{1525018018320474019231037} a^{14} - \frac{333140082343998958952953}{1525018018320474019231037} a^{13} - \frac{469830432968822938508622}{1525018018320474019231037} a^{12} - \frac{716012646512301726341344}{1525018018320474019231037} a^{11} - \frac{547850005572961563348}{1525018018320474019231037} a^{10} + \frac{314123954475013776905437}{1525018018320474019231037} a^{9} - \frac{712464327573734964106647}{1525018018320474019231037} a^{8} - \frac{137337529524342610167217}{1525018018320474019231037} a^{7} + \frac{566186010339201639796520}{1525018018320474019231037} a^{6} + \frac{291969096873254744162740}{1525018018320474019231037} a^{5} - \frac{656295867055772714656410}{1525018018320474019231037} a^{4} + \frac{58670094976079271701224}{1525018018320474019231037} a^{3} - \frac{623912025144299171795651}{1525018018320474019231037} a^{2} - \frac{727338682051990066958306}{1525018018320474019231037} a + \frac{171656612131699192318256}{1525018018320474019231037}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{80175057070766}{1670596077643049} a^{17} - \frac{481458729828347}{1670596077643049} a^{16} - \frac{235977749504265}{1670596077643049} a^{15} + \frac{5437008077308020}{1670596077643049} a^{14} + \frac{945901418525125}{1670596077643049} a^{13} - \frac{46271956574817727}{1670596077643049} a^{12} + \frac{27842348351612035}{1670596077643049} a^{11} + \frac{189062360878011087}{1670596077643049} a^{10} - \frac{215431835349005225}{1670596077643049} a^{9} - \frac{354177145409251907}{1670596077643049} a^{8} + \frac{615023617419548543}{1670596077643049} a^{7} + \frac{232690104456450962}{1670596077643049} a^{6} - \frac{824197668732660532}{1670596077643049} a^{5} + \frac{57112094832835476}{1670596077643049} a^{4} + \frac{469833133234570858}{1670596077643049} a^{3} - \frac{21609610762143921}{1670596077643049} a^{2} + \frac{21290036629892721}{1670596077643049} a + \frac{655812656932034}{1670596077643049} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 396277.1598571161 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.1163370485952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $31$ | 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |