Normalized defining polynomial
\( x^{18} + 9 x^{16} - 2 x^{15} + 42 x^{14} + 21 x^{13} + 312 x^{12} + 552 x^{11} + 1320 x^{10} + 1455 x^{9} + 1869 x^{8} + 1506 x^{7} + 1559 x^{6} + 1041 x^{5} + 579 x^{4} + 203 x^{3} + 54 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-36542633964773200992350208=-\,2^{12}\cdot 3^{21}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6}$, $\frac{1}{30} a^{13} + \frac{1}{30} a^{12} - \frac{1}{15} a^{11} - \frac{2}{15} a^{10} - \frac{1}{10} a^{9} - \frac{1}{30} a^{8} - \frac{4}{15} a^{7} - \frac{11}{30} a^{5} + \frac{13}{30} a^{4} + \frac{11}{30} a^{3} + \frac{7}{30} a^{2} - \frac{1}{10} a + \frac{1}{30}$, $\frac{1}{30} a^{14} + \frac{1}{15} a^{12} - \frac{1}{15} a^{11} + \frac{1}{30} a^{10} + \frac{1}{15} a^{9} + \frac{4}{15} a^{8} + \frac{4}{15} a^{7} - \frac{11}{30} a^{6} - \frac{1}{5} a^{5} + \frac{13}{30} a^{4} + \frac{1}{5} a^{3} + \frac{1}{6} a^{2} + \frac{2}{15} a + \frac{2}{15}$, $\frac{1}{19530} a^{15} + \frac{2}{1395} a^{14} - \frac{44}{3255} a^{13} - \frac{98}{1395} a^{12} + \frac{61}{2790} a^{11} - \frac{1013}{9765} a^{10} - \frac{929}{9765} a^{9} + \frac{1564}{9765} a^{8} - \frac{3719}{19530} a^{7} + \frac{1}{155} a^{6} + \frac{1117}{6510} a^{5} - \frac{4184}{9765} a^{4} + \frac{4177}{19530} a^{3} - \frac{2789}{9765} a^{2} + \frac{4777}{9765} a - \frac{2557}{9765}$, $\frac{1}{19530} a^{16} + \frac{127}{9765} a^{14} + \frac{23}{2790} a^{13} - \frac{1}{90} a^{12} + \frac{821}{9765} a^{11} + \frac{8}{105} a^{10} - \frac{929}{6510} a^{9} + \frac{6347}{19530} a^{8} + \frac{379}{1395} a^{7} + \frac{559}{2170} a^{6} + \frac{11}{19530} a^{5} - \frac{1259}{3906} a^{4} + \frac{3109}{19530} a^{3} - \frac{97}{217} a^{2} + \frac{4049}{19530} a + \frac{649}{1395}$, $\frac{1}{46539990} a^{17} - \frac{101}{6648570} a^{16} - \frac{286}{23269995} a^{15} - \frac{2956}{369365} a^{14} - \frac{23818}{3324285} a^{13} + \frac{956972}{23269995} a^{12} + \frac{206503}{7756665} a^{11} + \frac{283663}{4653999} a^{10} + \frac{155081}{2585555} a^{9} + \frac{253672}{3324285} a^{8} - \frac{12921029}{46539990} a^{7} + \frac{8279009}{46539990} a^{6} - \frac{783506}{4653999} a^{5} - \frac{4571731}{23269995} a^{4} - \frac{2053377}{5171110} a^{3} + \frac{2170047}{5171110} a^{2} - \frac{736897}{6648570} a - \frac{2803007}{6648570}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1722052}{7756665} a^{17} - \frac{96703}{2585555} a^{16} + \frac{5195503}{2585555} a^{15} - \frac{6075176}{7756665} a^{14} + \frac{73717109}{7756665} a^{13} + \frac{23615401}{7756665} a^{12} + \frac{535088513}{7756665} a^{11} + \frac{286987643}{2585555} a^{10} + \frac{713593287}{2585555} a^{9} + \frac{103096931}{369365} a^{8} + \frac{969027037}{2585555} a^{7} + \frac{102885804}{369365} a^{6} + \frac{343305278}{1108095} a^{5} + \frac{1450217068}{7756665} a^{4} + \frac{821262812}{7756665} a^{3} + \frac{82273839}{2585555} a^{2} + \frac{78170927}{7756665} a + \frac{13123018}{7756665} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 637987.1635985387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.1163370485952.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $31$ | 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |