Normalized defining polynomial
\( x^{18} - 1332 x^{15} + 390942 x^{12} + 37068931 x^{9} - 251077338 x^{6} + 53409637566 x^{3} + 8020417344913 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-36448868215394073947142909926060511831115554963=-\,3^{45}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $386.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(999=3^{3}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{999}(1,·)$, $\chi_{999}(515,·)$, $\chi_{999}(715,·)$, $\chi_{999}(593,·)$, $\chi_{999}(275,·)$, $\chi_{999}(340,·)$, $\chi_{999}(343,·)$, $\chi_{999}(602,·)$, $\chi_{999}(860,·)$, $\chi_{999}(736,·)$, $\chi_{999}(419,·)$, $\chi_{999}(490,·)$, $\chi_{999}(238,·)$, $\chi_{999}(692,·)$, $\chi_{999}(821,·)$, $\chi_{999}(884,·)$, $\chi_{999}(700,·)$, $\chi_{999}(766,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{259} a^{9} + \frac{3}{7} a^{3}$, $\frac{1}{259} a^{10} + \frac{3}{7} a^{4}$, $\frac{1}{259} a^{11} + \frac{3}{7} a^{5}$, $\frac{1}{1492099} a^{12} - \frac{9}{5761} a^{9} - \frac{22}{40327} a^{6} - \frac{656}{5761} a^{3} + \frac{557}{40327}$, $\frac{1}{1492099} a^{13} - \frac{9}{5761} a^{10} - \frac{22}{40327} a^{7} - \frac{656}{5761} a^{4} + \frac{557}{40327} a$, $\frac{1}{55207663} a^{14} - \frac{9}{213157} a^{11} - \frac{80676}{1492099} a^{8} - \frac{35222}{213157} a^{5} + \frac{14184}{40327} a^{2}$, $\frac{1}{4442339626011390419729} a^{15} - \frac{8261944566453}{120063233135442984317} a^{12} - \frac{220070812485212564}{120063233135442984317} a^{9} + \frac{771231255264965895}{120063233135442984317} a^{6} + \frac{1030161062570439081}{3244952246903864441} a^{3} - \frac{1358388263151521128}{3244952246903864441}$, $\frac{1}{2403305737672162217073389} a^{16} + \frac{6187619797482238}{64954209126274654515497} a^{13} + \frac{77586685580209149252}{64954209126274654515497} a^{10} - \frac{175791120961966931889}{64954209126274654515497} a^{7} + \frac{830173194499104166559}{1755519165574990662581} a^{4} + \frac{600554625117582313092}{1755519165574990662581} a$, $\frac{1}{1300188404080639759436703449} a^{17} - \frac{10088166759964027505}{1300188404080639759436703449} a^{14} - \frac{9303973555794072664475}{35140227137314588092883877} a^{11} + \frac{1555942742874164116593885}{35140227137314588092883877} a^{8} + \frac{5098375807952316388280289}{35140227137314588092883877} a^{5} - \frac{326806577575338279090058}{949735868576069948456321} a^{2}$
Class group and class number
$C_{333}\times C_{925407}$, which has order $308160531$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8100}{1739870348449331} a^{15} - \frac{11850210}{1739870348449331} a^{12} + \frac{4718876041}{1739870348449331} a^{9} - \frac{6573553398}{47023522931063} a^{6} - \frac{537432350346}{47023522931063} a^{3} + \frac{52532403555327}{47023522931063} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 798293358.2555804 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.110889.1, 6.0.36889110963.2, 9.9.110225327118882669776889.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.9.8.7 | $x^{9} - 2368$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.7 | $x^{9} - 2368$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |