Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} - 32 x^{15} - 10 x^{14} + 28 x^{13} + 172 x^{12} + 416 x^{11} + 5 x^{10} - 514 x^{9} - 735 x^{8} - 824 x^{7} + 1081 x^{6} + 1802 x^{5} + 1721 x^{4} + 1940 x^{3} + 1463 x^{2} - 294 x + 1561 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3628410392018944000000000=-\,2^{27}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} - \frac{1}{20} a^{10} + \frac{1}{5} a^{9} - \frac{1}{20} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{3} + \frac{1}{20} a^{2} + \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{20} a^{13} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{4} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{4} - \frac{7}{20} a^{3} - \frac{1}{10} a^{2} + \frac{1}{20} a + \frac{2}{5}$, $\frac{1}{20} a^{14} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{2}{5} a^{7} - \frac{1}{10} a^{5} - \frac{7}{20} a^{4} - \frac{1}{10} a^{3} + \frac{1}{20} a^{2} + \frac{2}{5} a$, $\frac{1}{20} a^{15} + \frac{1}{20} a^{11} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{1}{4} a^{7} - \frac{1}{10} a^{6} - \frac{1}{20} a^{5} + \frac{3}{10} a^{4} - \frac{1}{20} a^{3} - \frac{1}{5} a^{2} - \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{140} a^{16} + \frac{3}{140} a^{15} - \frac{1}{70} a^{14} - \frac{3}{140} a^{13} - \frac{1}{70} a^{12} - \frac{3}{28} a^{10} - \frac{9}{140} a^{9} - \frac{1}{35} a^{8} - \frac{3}{20} a^{7} + \frac{67}{140} a^{6} + \frac{1}{140} a^{5} - \frac{31}{140} a^{4} + \frac{5}{14} a^{3} - \frac{1}{5} a^{2} - \frac{3}{20} a - \frac{1}{2}$, $\frac{1}{445533439136420569190459140} a^{17} + \frac{258334722178596433773096}{111383359784105142297614785} a^{16} - \frac{4462665977484466481672897}{222766719568210284595229570} a^{15} - \frac{77997674975358538673411}{445533439136420569190459140} a^{14} + \frac{2122412808935295015419265}{89106687827284113838091828} a^{13} - \frac{7368116613220810179865239}{445533439136420569190459140} a^{12} + \frac{3861870520943457472686143}{111383359784105142297614785} a^{11} - \frac{4847926321230412054816621}{111383359784105142297614785} a^{10} - \frac{102730008198313786017814309}{445533439136420569190459140} a^{9} + \frac{102278818918707062193567337}{445533439136420569190459140} a^{8} + \frac{168796002330425726174206929}{445533439136420569190459140} a^{7} + \frac{66206839854781884340138943}{445533439136420569190459140} a^{6} + \frac{157607533624583752884504923}{445533439136420569190459140} a^{5} - \frac{116393941668837649550304111}{445533439136420569190459140} a^{4} - \frac{11001562993138899494463233}{445533439136420569190459140} a^{3} - \frac{13221714429235544953838013}{31823817081172897799318510} a^{2} + \frac{205755248188432550477741}{31823817081172897799318510} a - \frac{26224416175315632709133}{285415399831147065464740}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19821.7051984 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), 3.1.1960.1 x3, \(\Q(\zeta_{7})^+\), 6.0.153664000.2, 6.0.3136000.1 x2, 6.0.153664000.1, 9.3.7529536000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.3136000.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |