Normalized defining polynomial
\( x^{18} - 6 x^{17} + 15 x^{16} + 21 x^{15} - 189 x^{14} + 447 x^{13} - 277 x^{12} - 819 x^{11} + 2771 x^{10} - 6116 x^{9} + 8916 x^{8} - 5025 x^{7} + 13003 x^{6} - 24345 x^{5} + 9437 x^{4} - 22214 x^{3} + 36967 x^{2} + 19033 x + 93919 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3601944964195995655415181312=-\,2^{12}\cdot 3^{9}\cdot 7^{6}\cdot 11^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} - \frac{5}{11} a^{9} + \frac{2}{11} a^{8} - \frac{4}{11} a^{7} - \frac{2}{11} a^{5} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{13} - \frac{4}{11} a^{10} - \frac{3}{11} a^{9} - \frac{2}{11} a^{8} - \frac{4}{11} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} - \frac{2}{11} a^{4} + \frac{1}{11} a^{3} + \frac{5}{11} a^{2} + \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{11} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{4}{11} a^{8} - \frac{2}{11} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} + \frac{1}{11} a^{4} + \frac{5}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{8452235} a^{15} - \frac{1}{1690447} a^{14} + \frac{4529}{768385} a^{13} + \frac{271694}{8452235} a^{12} + \frac{541571}{8452235} a^{11} - \frac{29063}{153677} a^{10} - \frac{3229287}{8452235} a^{9} + \frac{214778}{8452235} a^{8} - \frac{3857079}{8452235} a^{7} + \frac{873474}{8452235} a^{6} + \frac{700671}{8452235} a^{5} - \frac{344294}{768385} a^{4} - \frac{1788081}{8452235} a^{3} - \frac{3952543}{8452235} a^{2} - \frac{681966}{8452235} a + \frac{1098264}{8452235}$, $\frac{1}{8452235} a^{16} + \frac{49794}{8452235} a^{14} - \frac{247596}{8452235} a^{13} + \frac{363271}{8452235} a^{12} + \frac{48112}{153677} a^{11} - \frac{1232607}{8452235} a^{10} + \frac{2509583}{8452235} a^{9} + \frac{4132276}{8452235} a^{8} - \frac{739066}{8452235} a^{7} - \frac{1847424}{8452235} a^{6} - \frac{4125804}{8452235} a^{5} - \frac{2283011}{8452235} a^{4} - \frac{2135558}{8452235} a^{3} - \frac{3540211}{8452235} a^{2} + \frac{2298744}{8452235} a - \frac{131152}{1690447}$, $\frac{1}{1046735485851171025208334695} a^{17} - \frac{43534610367253263688}{1046735485851171025208334695} a^{16} + \frac{3437351326160510211}{95157771441015547746212245} a^{15} - \frac{46061730514308279255912538}{1046735485851171025208334695} a^{14} + \frac{21687194489138196413776547}{1046735485851171025208334695} a^{13} + \frac{554861237242870338688154}{209347097170234205041666939} a^{12} + \frac{66395213229807189942299601}{209347097170234205041666939} a^{11} - \frac{155425114794227622267975551}{1046735485851171025208334695} a^{10} + \frac{393371120689617769436867938}{1046735485851171025208334695} a^{9} + \frac{160359477849722463575237857}{1046735485851171025208334695} a^{8} - \frac{45822911362529822797199984}{95157771441015547746212245} a^{7} + \frac{462789820655957067660129081}{1046735485851171025208334695} a^{6} + \frac{320022018383919957604500713}{1046735485851171025208334695} a^{5} + \frac{355746693814824392440985857}{1046735485851171025208334695} a^{4} + \frac{164010069123564282228823181}{1046735485851171025208334695} a^{3} + \frac{154715990948904566028085456}{1046735485851171025208334695} a^{2} - \frac{341201490055334311248977724}{1046735485851171025208334695} a - \frac{15623469900152188004520207}{1046735485851171025208334695}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{106653444}{5300511057865} a^{17} + \frac{508448312}{5300511057865} a^{16} - \frac{952207734}{5300511057865} a^{15} - \frac{3587155718}{5300511057865} a^{14} + \frac{16497731652}{5300511057865} a^{13} - \frac{5666231459}{1060102211573} a^{12} - \frac{1516513718}{1060102211573} a^{11} + \frac{95654295484}{5300511057865} a^{10} - \frac{217008678992}{5300511057865} a^{9} + \frac{469510631727}{5300511057865} a^{8} - \frac{428908118444}{5300511057865} a^{7} - \frac{161193888474}{5300511057865} a^{6} - \frac{465211707542}{5300511057865} a^{5} + \frac{29518691767}{5300511057865} a^{4} + \frac{1120656169666}{5300511057865} a^{3} + \frac{1009733201106}{5300511057865} a^{2} - \frac{77774608534}{5300511057865} a + \frac{2815400394673}{5300511057865} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1305071.139073367 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.44.1, 6.0.19370043.1, 6.0.52272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.12.10.2 | $x^{12} + 143 x^{6} + 5929$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |