Normalized defining polynomial
\( x^{18} - 3 x^{17} + 15 x^{16} - 18 x^{15} + 33 x^{14} - 21 x^{13} + 75 x^{12} + 69 x^{11} + 132 x^{10} + 214 x^{9} + 309 x^{8} + 507 x^{7} + 567 x^{6} + 543 x^{5} + 381 x^{4} + 195 x^{3} + 75 x^{2} + 12 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-355779876259553472000000=-\,2^{12}\cdot 3^{33}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{9} - \frac{1}{3} a^{6} + \frac{2}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{10} - \frac{1}{3} a^{7} + \frac{2}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{9} - \frac{1}{9} a^{6} + \frac{1}{3} a^{3} - \frac{2}{9}$, $\frac{1}{63} a^{16} - \frac{1}{21} a^{14} + \frac{1}{63} a^{13} - \frac{1}{63} a^{12} - \frac{5}{63} a^{10} - \frac{2}{63} a^{9} + \frac{3}{7} a^{8} + \frac{23}{63} a^{7} - \frac{8}{21} a^{6} + \frac{1}{3} a^{5} + \frac{5}{63} a^{4} - \frac{2}{63} a^{3} - \frac{1}{7} a^{2} + \frac{29}{63} a + \frac{2}{63}$, $\frac{1}{63372141} a^{17} - \frac{224299}{63372141} a^{16} - \frac{1070086}{63372141} a^{15} - \frac{817975}{21124047} a^{14} - \frac{868933}{21124047} a^{13} + \frac{697190}{21124047} a^{12} - \frac{907520}{63372141} a^{11} + \frac{173146}{1242591} a^{10} - \frac{91230}{7041349} a^{9} + \frac{4491512}{9053163} a^{8} - \frac{29874263}{63372141} a^{7} - \frac{3799676}{63372141} a^{6} + \frac{3164599}{21124047} a^{5} - \frac{3711178}{21124047} a^{4} + \frac{9308780}{21124047} a^{3} - \frac{28733260}{63372141} a^{2} - \frac{3278182}{7041349} a - \frac{1112959}{21124047}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{10466}{16371} a^{17} + \frac{37445}{16371} a^{16} - \frac{182978}{16371} a^{15} + \frac{310774}{16371} a^{14} - \frac{600928}{16371} a^{13} + \frac{696748}{16371} a^{12} - \frac{1386710}{16371} a^{11} + \frac{14896}{963} a^{10} - \frac{1885664}{16371} a^{9} - \frac{1225399}{16371} a^{8} - \frac{2854802}{16371} a^{7} - \frac{4171054}{16371} a^{6} - \frac{4304878}{16371} a^{5} - \frac{4336217}{16371} a^{4} - \frac{2475484}{16371} a^{3} - \frac{1347430}{16371} a^{2} - \frac{364730}{16371} a - \frac{27730}{16371} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119253.839734 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1620.1, 6.0.314928.1, 6.0.7873200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |