Normalized defining polynomial
\( x^{18} - 6 x^{15} + 18 x^{12} + 22 x^{9} + 9 x^{6} + 12 x^{3} + 8 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-354117672677668838178816=-\,2^{18}\cdot 3^{38}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{6} + \frac{1}{6} a^{3} - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{10} + \frac{5}{12} a^{7} - \frac{5}{12} a^{4} + \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{11} - \frac{1}{12} a^{8} - \frac{5}{12} a^{5} - \frac{1}{6} a^{2}$, $\frac{1}{552} a^{15} + \frac{11}{552} a^{12} + \frac{113}{552} a^{9} - \frac{173}{552} a^{6} - \frac{10}{69} a^{3} + \frac{9}{23}$, $\frac{1}{552} a^{16} + \frac{11}{552} a^{13} + \frac{7}{184} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{65}{184} a^{7} - \frac{1}{3} a^{5} + \frac{49}{138} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{4}{69} a - \frac{1}{3}$, $\frac{1}{552} a^{17} + \frac{11}{552} a^{14} + \frac{7}{184} a^{11} - \frac{1}{6} a^{9} + \frac{11}{552} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{46} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{9}{23} a^{2} + \frac{1}{3} a - \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15}{184} a^{15} + \frac{111}{184} a^{12} - \frac{407}{184} a^{9} + \frac{111}{184} a^{6} + \frac{12}{23} a^{3} - \frac{14}{23} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 500299.1205185959 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.324.1 x3, 3.1.243.1, 6.0.3779136.2, 6.0.419904.2, 9.1.74384733888.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||