Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 18 x^{15} - 9 x^{14} + 54 x^{13} - 18 x^{11} + 99 x^{10} + 6 x^{9} - 36 x^{8} + 18 x^{7} + 9 x^{6} - 54 x^{5} + 18 x^{3} + 18 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3537182715531733726396416=-\,2^{34}\cdot 3^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{30} a^{12} - \frac{2}{15} a^{11} + \frac{1}{10} a^{10} - \frac{2}{15} a^{9} - \frac{3}{10} a^{8} - \frac{1}{2} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{30} a^{13} - \frac{1}{10} a^{11} - \frac{1}{15} a^{10} - \frac{1}{6} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{30} a^{14} - \frac{2}{15} a^{11} + \frac{2}{15} a^{10} + \frac{1}{15} a^{9} - \frac{2}{5} a^{8} + \frac{3}{10} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{30} a^{15} - \frac{1}{15} a^{11} + \frac{2}{15} a^{10} + \frac{1}{15} a^{9} - \frac{1}{5} a^{8} + \frac{3}{10} a^{7} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{30} a^{16} - \frac{2}{15} a^{11} - \frac{1}{15} a^{10} - \frac{2}{15} a^{9} - \frac{3}{10} a^{8} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{114540} a^{17} + \frac{613}{114540} a^{16} + \frac{1483}{114540} a^{15} + \frac{1639}{114540} a^{14} - \frac{88}{9545} a^{13} - \frac{61}{9545} a^{12} - \frac{1488}{9545} a^{11} - \frac{3761}{28635} a^{10} + \frac{3811}{22908} a^{9} - \frac{1953}{7636} a^{8} + \frac{14619}{38180} a^{7} - \frac{18583}{38180} a^{6} - \frac{1529}{19090} a^{5} + \frac{2111}{9545} a^{4} + \frac{953}{9545} a^{3} - \frac{7581}{19090} a^{2} + \frac{7319}{19090} a - \frac{5323}{19090}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{22}{28635} a^{17} + \frac{1786}{28635} a^{16} - \frac{9718}{28635} a^{15} + \frac{17323}{19090} a^{14} - \frac{5619}{9545} a^{13} - \frac{27803}{28635} a^{12} + \frac{22131}{9545} a^{11} + \frac{21236}{9545} a^{10} - \frac{39319}{28635} a^{9} + \frac{20112}{9545} a^{8} + \frac{23911}{9545} a^{7} - \frac{31853}{19090} a^{6} - \frac{43446}{9545} a^{5} + \frac{7041}{9545} a^{4} - \frac{3686}{9545} a^{3} - \frac{10056}{9545} a^{2} + \frac{6312}{9545} a + \frac{16586}{9545} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 233467.89303899015 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.108.1, 3.1.648.1, 6.0.186624.1, 6.0.6718464.3, 9.1.117546246144.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||